Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measdivcst Structured version   Visualization version   GIF version

Theorem measdivcst 32823
Description: Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
measdivcst ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀f/c /𝑒 𝐴) ∈ (measures‘𝑆))

Proof of Theorem measdivcst
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofcfval3 32701 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀f/c /𝑒 𝐴) = (𝑥 ∈ dom 𝑀 ↦ ((𝑀𝑥) /𝑒 𝐴)))
2 measfrge0 32802 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞))
32fdmd 6679 . . . . 5 (𝑀 ∈ (measures‘𝑆) → dom 𝑀 = 𝑆)
43adantr 481 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → dom 𝑀 = 𝑆)
54mpteq1d 5200 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ dom 𝑀 ↦ ((𝑀𝑥) /𝑒 𝐴)) = (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)))
61, 5eqtrd 2776 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀f/c /𝑒 𝐴) = (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)))
7 measvxrge0 32804 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥𝑆) → (𝑀𝑥) ∈ (0[,]+∞))
87adantlr 713 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝑥) ∈ (0[,]+∞))
9 simplr 767 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ+)
108, 9xrpxdivcld 31791 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀𝑥) /𝑒 𝐴) ∈ (0[,]+∞))
1110fmpttd 7063 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞))
12 measbase 32796 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
13 0elsiga 32713 . . . . . . 7 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
1412, 13syl 17 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∅ ∈ 𝑆)
1514adantr 481 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∅ ∈ 𝑆)
16 ovex 7390 . . . . 5 ((𝑀‘∅) /𝑒 𝐴) ∈ V
17 fveq2 6842 . . . . . . 7 (𝑥 = ∅ → (𝑀𝑥) = (𝑀‘∅))
1817oveq1d 7372 . . . . . 6 (𝑥 = ∅ → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀‘∅) /𝑒 𝐴))
19 eqid 2736 . . . . . 6 (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) = (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))
2018, 19fvmptg 6946 . . . . 5 ((∅ ∈ 𝑆 ∧ ((𝑀‘∅) /𝑒 𝐴) ∈ V) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴))
2115, 16, 20sylancl 586 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴))
22 measvnul 32805 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
2322oveq1d 7372 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ((𝑀‘∅) /𝑒 𝐴) = (0 /𝑒 𝐴))
24 xdiv0rp 31786 . . . . 5 (𝐴 ∈ ℝ+ → (0 /𝑒 𝐴) = 0)
2523, 24sylan9eq 2796 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑀‘∅) /𝑒 𝐴) = 0)
2621, 25eqtrd 2776 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0)
27 simpll 765 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+))
28 simplr 767 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆)
29 simprl 769 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ≼ ω)
30 simprr 771 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Disj 𝑧𝑦 𝑧)
31 vex 3449 . . . . . . . . . 10 𝑦 ∈ V
3231a1i 11 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝑦 ∈ V)
33 simplll 773 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑀 ∈ (measures‘𝑆))
34 velpw 4565 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝑆𝑦𝑆)
35 ssel2 3939 . . . . . . . . . . . 12 ((𝑦𝑆𝑧𝑦) → 𝑧𝑆)
3634, 35sylanb 581 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝑆𝑧𝑦) → 𝑧𝑆)
3736adantll 712 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → 𝑧𝑆)
38 measvxrge0 32804 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑧𝑆) → (𝑀𝑧) ∈ (0[,]+∞))
3933, 37, 38syl2anc 584 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧𝑦) → (𝑀𝑧) ∈ (0[,]+∞))
40 simplr 767 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝐴 ∈ ℝ+)
4132, 39, 40esumdivc 32682 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
42413ad2antr1 1188 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
4312ad2antrr 724 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑆 ran sigAlgebra)
44 simpr1 1194 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆)
45 simpr2 1195 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦 ≼ ω)
46 sigaclcu 32716 . . . . . . . . . 10 ((𝑆 ran sigAlgebra ∧ 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω) → 𝑦𝑆)
4743, 44, 45, 46syl3anc 1371 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑦𝑆)
48 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀 𝑦))
4948oveq1d 7372 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀 𝑦) /𝑒 𝐴))
50 ovex 7390 . . . . . . . . . 10 ((𝑀𝑥) /𝑒 𝐴) ∈ V
5149, 19, 50fvmpt3i 6953 . . . . . . . . 9 ( 𝑦𝑆 → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = ((𝑀 𝑦) /𝑒 𝐴))
5247, 51syl 17 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = ((𝑀 𝑦) /𝑒 𝐴))
53 simpll 765 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → 𝑀 ∈ (measures‘𝑆))
54 simpr3 1196 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Disj 𝑧𝑦 𝑧)
55 measvun 32808 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆 ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧))
5653, 44, 45, 54, 55syl112anc 1374 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → (𝑀 𝑦) = Σ*𝑧𝑦(𝑀𝑧))
5756oveq1d 7372 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑀 𝑦) /𝑒 𝐴) = (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴))
5852, 57eqtrd 2776 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = (Σ*𝑧𝑦(𝑀𝑧) /𝑒 𝐴))
59 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑀𝑥) = (𝑀𝑧))
6059oveq1d 7372 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑀𝑥) /𝑒 𝐴) = ((𝑀𝑧) /𝑒 𝐴))
6160, 19, 50fvmpt3i 6953 . . . . . . . . . 10 (𝑧𝑆 → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀𝑧) /𝑒 𝐴))
6236, 61syl 17 . . . . . . . . 9 ((𝑦 ∈ 𝒫 𝑆𝑧𝑦) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀𝑧) /𝑒 𝐴))
6362esumeq2dv 32637 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑆 → Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
6444, 63syl 17 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧𝑦((𝑀𝑧) /𝑒 𝐴))
6542, 58, 643eqtr4d 2786 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))
6627, 28, 29, 30, 65syl13anc 1372 . . . . 5 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧)) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))
6766ex 413 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))
6867ralrimiva 3143 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))
69 ismeas 32798 . . . . . 6 (𝑆 ran sigAlgebra → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))))
7012, 69syl 17 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧)))))
7170biimprd 247 . . . 4 (𝑀 ∈ (measures‘𝑆) → (((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)))
7271adantr 481 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧) → ((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘ 𝑦) = Σ*𝑧𝑦((𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)))
7311, 26, 68, 72mp3and 1464 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))
746, 73eqeltrd 2838 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀f/c /𝑒 𝐴) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910  c0 4282  𝒫 cpw 4560   cuni 4865  Disj wdisj 5070   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  ωcom 7802  cdom 8881  0cc0 11051  +∞cpnf 11186  +crp 12915  [,]cicc 13267   /𝑒 cxdiv 31773  Σ*cesum 32626  f/c cofc 32694  sigAlgebracsiga 32707  measurescmeas 32794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-tset 17152  df-ple 17153  df-ds 17155  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-ordt 17383  df-xrs 17384  df-mre 17466  df-mrc 17467  df-acs 17469  df-ps 18455  df-tsr 18456  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-cntz 19097  df-cmn 19564  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-ntr 22371  df-nei 22449  df-cn 22578  df-cnp 22579  df-haus 22666  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tsms 23478  df-xdiv 31774  df-esum 32627  df-ofc 32695  df-siga 32708  df-meas 32795
This theorem is referenced by:  probfinmeasb  33028
  Copyright terms: Public domain W3C validator