| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ofcfval3 34103 | . . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀 ∘f/c
/𝑒 𝐴) =
(𝑥 ∈ dom 𝑀 ↦ ((𝑀‘𝑥) /𝑒 𝐴))) | 
| 2 |  | measfrge0 34204 | . . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) | 
| 3 | 2 | fdmd 6746 | . . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → dom 𝑀 = 𝑆) | 
| 4 | 3 | adantr 480 | . . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → dom
𝑀 = 𝑆) | 
| 5 | 4 | mpteq1d 5237 | . . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ dom 𝑀 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))) | 
| 6 | 1, 5 | eqtrd 2777 | . 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀 ∘f/c
/𝑒 𝐴) =
(𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))) | 
| 7 |  | measvxrge0 34206 | . . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ∈ (0[,]+∞)) | 
| 8 | 7 | adantlr 715 | . . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ∈ (0[,]+∞)) | 
| 9 |  | simplr 769 | . . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈
ℝ+) | 
| 10 | 8, 9 | xrpxdivcld 32917 | . . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → ((𝑀‘𝑥) /𝑒 𝐴) ∈ (0[,]+∞)) | 
| 11 | 10 | fmpttd 7135 | . . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞)) | 
| 12 |  | measbase 34198 | . . . . . . 7
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) | 
| 13 |  | 0elsiga 34115 | . . . . . . 7
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) | 
| 14 | 12, 13 | syl 17 | . . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → ∅ ∈ 𝑆) | 
| 15 | 14 | adantr 480 | . . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∅
∈ 𝑆) | 
| 16 |  | ovex 7464 | . . . . 5
⊢ ((𝑀‘∅)
/𝑒 𝐴)
∈ V | 
| 17 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑥 = ∅ → (𝑀‘𝑥) = (𝑀‘∅)) | 
| 18 | 17 | oveq1d 7446 | . . . . . 6
⊢ (𝑥 = ∅ → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘∅) /𝑒 𝐴)) | 
| 19 |  | eqid 2737 | . . . . . 6
⊢ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) | 
| 20 | 18, 19 | fvmptg 7014 | . . . . 5
⊢ ((∅
∈ 𝑆 ∧ ((𝑀‘∅)
/𝑒 𝐴)
∈ V) → ((𝑥 ∈
𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴)) | 
| 21 | 15, 16, 20 | sylancl 586 | . . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴)) | 
| 22 |  | measvnul 34207 | . . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | 
| 23 | 22 | oveq1d 7446 | . . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → ((𝑀‘∅) /𝑒 𝐴) = (0 /𝑒
𝐴)) | 
| 24 |  | xdiv0rp 32912 | . . . . 5
⊢ (𝐴 ∈ ℝ+
→ (0 /𝑒 𝐴) = 0) | 
| 25 | 23, 24 | sylan9eq 2797 | . . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑀‘∅)
/𝑒 𝐴) =
0) | 
| 26 | 21, 25 | eqtrd 2777 | . . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0) | 
| 27 |  | simpll 767 | . . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈
ℝ+)) | 
| 28 |  | simplr 769 | . . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆) | 
| 29 |  | simprl 771 | . . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ≼ ω) | 
| 30 |  | simprr 773 | . . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Disj 𝑧 ∈ 𝑦 𝑧) | 
| 31 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑦 ∈ V | 
| 32 | 31 | a1i 11 | . . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝑦 ∈ V) | 
| 33 |  | simplll 775 | . . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → 𝑀 ∈ (measures‘𝑆)) | 
| 34 |  | velpw 4605 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 𝑆 ↔ 𝑦 ⊆ 𝑆) | 
| 35 |  | ssel2 3978 | . . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝑆 ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) | 
| 36 | 34, 35 | sylanb 581 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) | 
| 37 | 36 | adantll 714 | . . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) | 
| 38 |  | measvxrge0 34206 | . . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑀‘𝑧) ∈ (0[,]+∞)) | 
| 39 | 33, 37, 38 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → (𝑀‘𝑧) ∈ (0[,]+∞)) | 
| 40 |  | simplr 769 | . . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝐴 ∈
ℝ+) | 
| 41 | 32, 39, 40 | esumdivc 34084 | . . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) →
(Σ*𝑧
∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) | 
| 42 | 41 | 3ad2antr1 1189 | . . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) | 
| 43 | 12 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑆 ∈ ∪ ran
sigAlgebra) | 
| 44 |  | simpr1 1195 | . . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆) | 
| 45 |  | simpr2 1196 | . . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ≼ ω) | 
| 46 |  | sigaclcu 34118 | . . . . . . . . . 10
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦
∈ 𝑆) | 
| 47 | 43, 44, 45, 46 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ∪ 𝑦 ∈ 𝑆) | 
| 48 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑥 = ∪
𝑦 → (𝑀‘𝑥) = (𝑀‘∪ 𝑦)) | 
| 49 | 48 | oveq1d 7446 | . . . . . . . . . 10
⊢ (𝑥 = ∪
𝑦 → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) | 
| 50 |  | ovex 7464 | . . . . . . . . . 10
⊢ ((𝑀‘𝑥) /𝑒 𝐴) ∈ V | 
| 51 | 49, 19, 50 | fvmpt3i 7021 | . . . . . . . . 9
⊢ (∪ 𝑦
∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) | 
| 52 | 47, 51 | syl 17 | . . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) | 
| 53 |  | simpll 767 | . . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑀 ∈ (measures‘𝑆)) | 
| 54 |  | simpr3 1197 | . . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Disj 𝑧 ∈ 𝑦 𝑧) | 
| 55 |  | measvun 34210 | . . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆 ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧)) | 
| 56 | 53, 44, 45, 54, 55 | syl112anc 1376 | . . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧)) | 
| 57 | 56 | oveq1d 7446 | . . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑀‘∪ 𝑦) /𝑒 𝐴) = (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴)) | 
| 58 | 52, 57 | eqtrd 2777 | . . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴)) | 
| 59 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑀‘𝑥) = (𝑀‘𝑧)) | 
| 60 | 59 | oveq1d 7446 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘𝑧) /𝑒 𝐴)) | 
| 61 | 60, 19, 50 | fvmpt3i 7021 | . . . . . . . . . 10
⊢ (𝑧 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀‘𝑧) /𝑒 𝐴)) | 
| 62 | 36, 61 | syl 17 | . . . . . . . . 9
⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑧 ∈ 𝑦) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀‘𝑧) /𝑒 𝐴)) | 
| 63 | 62 | esumeq2dv 34039 | . . . . . . . 8
⊢ (𝑦 ∈ 𝒫 𝑆 → Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) | 
| 64 | 44, 63 | syl 17 | . . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) | 
| 65 | 42, 58, 64 | 3eqtr4d 2787 | . . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧)) | 
| 66 | 27, 28, 29, 30, 65 | syl13anc 1374 | . . . . 5
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧)) | 
| 67 | 66 | ex 412 | . . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) | 
| 68 | 67 | ralrimiva 3146 | . . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) →
∀𝑦 ∈ 𝒫
𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) | 
| 69 |  | ismeas 34200 | . . . . . 6
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))))) | 
| 70 | 12, 69 | syl 17 | . . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))))) | 
| 71 | 70 | biimprd 248 | . . . 4
⊢ (𝑀 ∈ (measures‘𝑆) → (((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))) | 
| 72 | 71 | adantr 480 | . . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))) | 
| 73 | 11, 26, 68, 72 | mp3and 1466 | . 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)) | 
| 74 | 6, 73 | eqeltrd 2841 | 1
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀 ∘f/c
/𝑒 𝐴)
∈ (measures‘𝑆)) |