Step | Hyp | Ref
| Expression |
1 | | ofcfval3 32070 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀 ∘f/c
/𝑒 𝐴) =
(𝑥 ∈ dom 𝑀 ↦ ((𝑀‘𝑥) /𝑒 𝐴))) |
2 | | measfrge0 32171 |
. . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) |
3 | 2 | fdmd 6611 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → dom 𝑀 = 𝑆) |
4 | 3 | adantr 481 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → dom
𝑀 = 𝑆) |
5 | 4 | mpteq1d 5169 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ dom 𝑀 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))) |
6 | 1, 5 | eqtrd 2778 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀 ∘f/c
/𝑒 𝐴) =
(𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))) |
7 | | measvxrge0 32173 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ∈ (0[,]+∞)) |
8 | 7 | adantlr 712 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ∈ (0[,]+∞)) |
9 | | simplr 766 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈
ℝ+) |
10 | 8, 9 | xrpxdivcld 31209 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → ((𝑀‘𝑥) /𝑒 𝐴) ∈ (0[,]+∞)) |
11 | 10 | fmpttd 6989 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞)) |
12 | | measbase 32165 |
. . . . . . 7
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) |
13 | | 0elsiga 32082 |
. . . . . . 7
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → ∅ ∈ 𝑆) |
15 | 14 | adantr 481 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∅
∈ 𝑆) |
16 | | ovex 7308 |
. . . . 5
⊢ ((𝑀‘∅)
/𝑒 𝐴)
∈ V |
17 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑀‘𝑥) = (𝑀‘∅)) |
18 | 17 | oveq1d 7290 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘∅) /𝑒 𝐴)) |
19 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) |
20 | 18, 19 | fvmptg 6873 |
. . . . 5
⊢ ((∅
∈ 𝑆 ∧ ((𝑀‘∅)
/𝑒 𝐴)
∈ V) → ((𝑥 ∈
𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴)) |
21 | 15, 16, 20 | sylancl 586 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴)) |
22 | | measvnul 32174 |
. . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) |
23 | 22 | oveq1d 7290 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → ((𝑀‘∅) /𝑒 𝐴) = (0 /𝑒
𝐴)) |
24 | | xdiv0rp 31204 |
. . . . 5
⊢ (𝐴 ∈ ℝ+
→ (0 /𝑒 𝐴) = 0) |
25 | 23, 24 | sylan9eq 2798 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑀‘∅)
/𝑒 𝐴) =
0) |
26 | 21, 25 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0) |
27 | | simpll 764 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈
ℝ+)) |
28 | | simplr 766 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆) |
29 | | simprl 768 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ≼ ω) |
30 | | simprr 770 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Disj 𝑧 ∈ 𝑦 𝑧) |
31 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝑦 ∈ V) |
33 | | simplll 772 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → 𝑀 ∈ (measures‘𝑆)) |
34 | | velpw 4538 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 𝑆 ↔ 𝑦 ⊆ 𝑆) |
35 | | ssel2 3916 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝑆 ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) |
36 | 34, 35 | sylanb 581 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) |
37 | 36 | adantll 711 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) |
38 | | measvxrge0 32173 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
39 | 33, 37, 38 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
40 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝐴 ∈
ℝ+) |
41 | 32, 39, 40 | esumdivc 32051 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) →
(Σ*𝑧
∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) |
42 | 41 | 3ad2antr1 1187 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) |
43 | 12 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑆 ∈ ∪ ran
sigAlgebra) |
44 | | simpr1 1193 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆) |
45 | | simpr2 1194 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ≼ ω) |
46 | | sigaclcu 32085 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦
∈ 𝑆) |
47 | 43, 44, 45, 46 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ∪ 𝑦 ∈ 𝑆) |
48 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = ∪
𝑦 → (𝑀‘𝑥) = (𝑀‘∪ 𝑦)) |
49 | 48 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝑥 = ∪
𝑦 → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) |
50 | | ovex 7308 |
. . . . . . . . . 10
⊢ ((𝑀‘𝑥) /𝑒 𝐴) ∈ V |
51 | 49, 19, 50 | fvmpt3i 6880 |
. . . . . . . . 9
⊢ (∪ 𝑦
∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) |
52 | 47, 51 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) |
53 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑀 ∈ (measures‘𝑆)) |
54 | | simpr3 1195 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Disj 𝑧 ∈ 𝑦 𝑧) |
55 | | measvun 32177 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆 ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧)) |
56 | 53, 44, 45, 54, 55 | syl112anc 1373 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧)) |
57 | 56 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑀‘∪ 𝑦) /𝑒 𝐴) = (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴)) |
58 | 52, 57 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴)) |
59 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑀‘𝑥) = (𝑀‘𝑧)) |
60 | 59 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘𝑧) /𝑒 𝐴)) |
61 | 60, 19, 50 | fvmpt3i 6880 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀‘𝑧) /𝑒 𝐴)) |
62 | 36, 61 | syl 17 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑧 ∈ 𝑦) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀‘𝑧) /𝑒 𝐴)) |
63 | 62 | esumeq2dv 32006 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝒫 𝑆 → Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) |
64 | 44, 63 | syl 17 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) |
65 | 42, 58, 64 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧)) |
66 | 27, 28, 29, 30, 65 | syl13anc 1371 |
. . . . 5
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧)) |
67 | 66 | ex 413 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) |
68 | 67 | ralrimiva 3103 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) →
∀𝑦 ∈ 𝒫
𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) |
69 | | ismeas 32167 |
. . . . . 6
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))))) |
70 | 12, 69 | syl 17 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))))) |
71 | 70 | biimprd 247 |
. . . 4
⊢ (𝑀 ∈ (measures‘𝑆) → (((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))) |
72 | 71 | adantr 481 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))) |
73 | 11, 26, 68, 72 | mp3and 1463 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)) |
74 | 6, 73 | eqeltrd 2839 |
1
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑀 ∘f/c
/𝑒 𝐴)
∈ (measures‘𝑆)) |