MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextprop Structured version   Visualization version   GIF version

Theorem wwlksnextprop 28178
Description: Adding additional properties to the set of walks (as words) of a fixed length starting at a fixed vertex. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
wwlksnextprop (𝑁 ∈ ℕ0 → {𝑥𝑋 ∣ (𝑥‘0) = 𝑃} = {𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑦,𝐸   𝑥,𝑁,𝑦   𝑦,𝑃   𝑦,𝑋   𝑦,𝑌   𝑥,𝑤
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑤)   𝐺(𝑥,𝑦)   𝑋(𝑥,𝑤)   𝑌(𝑥,𝑤)

Proof of Theorem wwlksnextprop
StepHypRef Expression
1 eqidd 2739 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
2 wwlksnextprop.x . . . . . . . . 9 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
32wwlksnextproplem1 28175 . . . . . . . 8 ((𝑥𝑋𝑁 ∈ ℕ0) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
43ancoms 458 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
54adantr 480 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
6 eqeq2 2750 . . . . . . 7 ((𝑥‘0) = 𝑃 → (((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0) ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
76adantl 481 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0) ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
85, 7mpbid 231 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃)
9 wwlksnextprop.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
102, 9wwlksnextproplem2 28176 . . . . . . 7 ((𝑥𝑋𝑁 ∈ ℕ0) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
1110ancoms 458 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
1211adantr 480 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
13 simpr 484 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥𝑋) → 𝑥𝑋)
1413adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → 𝑥𝑋)
15 simpr 484 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥‘0) = 𝑃)
16 simpll 763 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → 𝑁 ∈ ℕ0)
17 wwlksnextprop.y . . . . . . . 8 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
182, 9, 17wwlksnextproplem3 28177 . . . . . . 7 ((𝑥𝑋 ∧ (𝑥‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑥 prefix (𝑁 + 1)) ∈ 𝑌)
1914, 15, 16, 18syl3anc 1369 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥 prefix (𝑁 + 1)) ∈ 𝑌)
20 eqeq2 2750 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ((𝑥 prefix (𝑁 + 1)) = 𝑦 ↔ (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1))))
21 fveq1 6755 . . . . . . . . 9 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (𝑦‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
2221eqeq1d 2740 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ((𝑦‘0) = 𝑃 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
23 fveq2 6756 . . . . . . . . . 10 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (lastS‘𝑦) = (lastS‘(𝑥 prefix (𝑁 + 1))))
2423preq1d 4672 . . . . . . . . 9 (𝑦 = (𝑥 prefix (𝑁 + 1)) → {(lastS‘𝑦), (lastS‘𝑥)} = {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)})
2524eleq1d 2823 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ({(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸 ↔ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸))
2620, 22, 253anbi123d 1434 . . . . . . 7 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) ↔ ((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)))
2726adantl 481 . . . . . 6 ((((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) ∧ 𝑦 = (𝑥 prefix (𝑁 + 1))) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) ↔ ((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)))
2819, 27rspcedv 3544 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸) → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
291, 8, 12, 28mp3and 1462 . . . 4 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸))
3029ex 412 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥‘0) = 𝑃 → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
3121eqcoms 2746 . . . . . . . . 9 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → (𝑦‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3231eqeq1d 2740 . . . . . . . 8 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → ((𝑦‘0) = 𝑃 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
333eqcomd 2744 . . . . . . . . . . 11 ((𝑥𝑋𝑁 ∈ ℕ0) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3433ancoms 458 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3534adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
36 eqeq2 2750 . . . . . . . . . 10 (𝑃 = ((𝑥 prefix (𝑁 + 1))‘0) → ((𝑥‘0) = 𝑃 ↔ (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)))
3736eqcoms 2746 . . . . . . . . 9 (((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 → ((𝑥‘0) = 𝑃 ↔ (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)))
3835, 37syl5ibr 245 . . . . . . . 8 (((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
3932, 38syl6bi 252 . . . . . . 7 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → ((𝑦‘0) = 𝑃 → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃)))
4039imp 406 . . . . . 6 (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
41403adant3 1130 . . . . 5 (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
4241com12 32 . . . 4 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥‘0) = 𝑃))
4342rexlimdva 3212 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → (∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥‘0) = 𝑃))
4430, 43impbid 211 . 2 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥‘0) = 𝑃 ↔ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
4544rabbidva 3402 1 (𝑁 ∈ ℕ0 → {𝑥𝑋 ∣ (𝑥‘0) = 𝑃} = {𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  {cpr 4560  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163  lastSclsw 14193   prefix cpfx 14311  Edgcedg 27320   WWalksN cwwlksn 28092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-substr 14282  df-pfx 14312  df-wwlks 28096  df-wwlksn 28097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator