MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextprop Structured version   Visualization version   GIF version

Theorem wwlksnextprop 27698
Description: Adding additional properties to the set of walks (as words) of a fixed length starting at a fixed vertex. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
wwlksnextprop (𝑁 ∈ ℕ0 → {𝑥𝑋 ∣ (𝑥‘0) = 𝑃} = {𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑦,𝐸   𝑥,𝑁,𝑦   𝑦,𝑃   𝑦,𝑋   𝑦,𝑌   𝑥,𝑤
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑤)   𝐺(𝑥,𝑦)   𝑋(𝑥,𝑤)   𝑌(𝑥,𝑤)

Proof of Theorem wwlksnextprop
StepHypRef Expression
1 eqidd 2799 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
2 wwlksnextprop.x . . . . . . . . 9 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
32wwlksnextproplem1 27695 . . . . . . . 8 ((𝑥𝑋𝑁 ∈ ℕ0) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
43ancoms 462 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
54adantr 484 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
6 eqeq2 2810 . . . . . . 7 ((𝑥‘0) = 𝑃 → (((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0) ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
76adantl 485 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0) ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
85, 7mpbid 235 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃)
9 wwlksnextprop.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
102, 9wwlksnextproplem2 27696 . . . . . . 7 ((𝑥𝑋𝑁 ∈ ℕ0) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
1110ancoms 462 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
1211adantr 484 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
13 simpr 488 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥𝑋) → 𝑥𝑋)
1413adantr 484 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → 𝑥𝑋)
15 simpr 488 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥‘0) = 𝑃)
16 simpll 766 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → 𝑁 ∈ ℕ0)
17 wwlksnextprop.y . . . . . . . 8 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
182, 9, 17wwlksnextproplem3 27697 . . . . . . 7 ((𝑥𝑋 ∧ (𝑥‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑥 prefix (𝑁 + 1)) ∈ 𝑌)
1914, 15, 16, 18syl3anc 1368 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥 prefix (𝑁 + 1)) ∈ 𝑌)
20 eqeq2 2810 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ((𝑥 prefix (𝑁 + 1)) = 𝑦 ↔ (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1))))
21 fveq1 6644 . . . . . . . . 9 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (𝑦‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
2221eqeq1d 2800 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ((𝑦‘0) = 𝑃 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
23 fveq2 6645 . . . . . . . . . 10 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (lastS‘𝑦) = (lastS‘(𝑥 prefix (𝑁 + 1))))
2423preq1d 4635 . . . . . . . . 9 (𝑦 = (𝑥 prefix (𝑁 + 1)) → {(lastS‘𝑦), (lastS‘𝑥)} = {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)})
2524eleq1d 2874 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ({(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸 ↔ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸))
2620, 22, 253anbi123d 1433 . . . . . . 7 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) ↔ ((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)))
2726adantl 485 . . . . . 6 ((((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) ∧ 𝑦 = (𝑥 prefix (𝑁 + 1))) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) ↔ ((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)))
2819, 27rspcedv 3564 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸) → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
291, 8, 12, 28mp3and 1461 . . . 4 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸))
3029ex 416 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥‘0) = 𝑃 → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
3121eqcoms 2806 . . . . . . . . 9 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → (𝑦‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3231eqeq1d 2800 . . . . . . . 8 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → ((𝑦‘0) = 𝑃 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
333eqcomd 2804 . . . . . . . . . . 11 ((𝑥𝑋𝑁 ∈ ℕ0) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3433ancoms 462 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3534adantr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
36 eqeq2 2810 . . . . . . . . . 10 (𝑃 = ((𝑥 prefix (𝑁 + 1))‘0) → ((𝑥‘0) = 𝑃 ↔ (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)))
3736eqcoms 2806 . . . . . . . . 9 (((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 → ((𝑥‘0) = 𝑃 ↔ (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)))
3835, 37syl5ibr 249 . . . . . . . 8 (((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
3932, 38syl6bi 256 . . . . . . 7 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → ((𝑦‘0) = 𝑃 → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃)))
4039imp 410 . . . . . 6 (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
41403adant3 1129 . . . . 5 (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
4241com12 32 . . . 4 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥‘0) = 𝑃))
4342rexlimdva 3243 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → (∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥‘0) = 𝑃))
4430, 43impbid 215 . 2 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥‘0) = 𝑃 ↔ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
4544rabbidva 3425 1 (𝑁 ∈ ℕ0 → {𝑥𝑋 ∣ (𝑥‘0) = 𝑃} = {𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  {cpr 4527  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  lastSclsw 13905   prefix cpfx 14023  Edgcedg 26840   WWalksN cwwlksn 27612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-substr 13994  df-pfx 14024  df-wwlks 27616  df-wwlksn 27617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator