MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextprop Structured version   Visualization version   GIF version

Theorem wwlksnextprop 29849
Description: Adding additional properties to the set of walks (as words) of a fixed length starting at a fixed vertex. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
wwlksnextprop.y 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
wwlksnextprop (𝑁 ∈ ℕ0 → {𝑥𝑋 ∣ (𝑥‘0) = 𝑃} = {𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑃   𝑦,𝐸   𝑥,𝑁,𝑦   𝑦,𝑃   𝑦,𝑋   𝑦,𝑌   𝑥,𝑤
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑤)   𝐺(𝑥,𝑦)   𝑋(𝑥,𝑤)   𝑌(𝑥,𝑤)

Proof of Theorem wwlksnextprop
StepHypRef Expression
1 eqidd 2731 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))
2 wwlksnextprop.x . . . . . . . . 9 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
32wwlksnextproplem1 29846 . . . . . . . 8 ((𝑥𝑋𝑁 ∈ ℕ0) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
43ancoms 458 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
54adantr 480 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
6 eqeq2 2742 . . . . . . 7 ((𝑥‘0) = 𝑃 → (((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0) ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
76adantl 481 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0) ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
85, 7mpbid 232 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃)
9 wwlksnextprop.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
102, 9wwlksnextproplem2 29847 . . . . . . 7 ((𝑥𝑋𝑁 ∈ ℕ0) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
1110ancoms 458 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
1211adantr 480 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)
13 simpr 484 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥𝑋) → 𝑥𝑋)
1413adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → 𝑥𝑋)
15 simpr 484 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥‘0) = 𝑃)
16 simpll 766 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → 𝑁 ∈ ℕ0)
17 wwlksnextprop.y . . . . . . . 8 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
182, 9, 17wwlksnextproplem3 29848 . . . . . . 7 ((𝑥𝑋 ∧ (𝑥‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑥 prefix (𝑁 + 1)) ∈ 𝑌)
1914, 15, 16, 18syl3anc 1373 . . . . . 6 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥 prefix (𝑁 + 1)) ∈ 𝑌)
20 eqeq2 2742 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ((𝑥 prefix (𝑁 + 1)) = 𝑦 ↔ (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1))))
21 fveq1 6860 . . . . . . . . 9 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (𝑦‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
2221eqeq1d 2732 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ((𝑦‘0) = 𝑃 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
23 fveq2 6861 . . . . . . . . . 10 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (lastS‘𝑦) = (lastS‘(𝑥 prefix (𝑁 + 1))))
2423preq1d 4706 . . . . . . . . 9 (𝑦 = (𝑥 prefix (𝑁 + 1)) → {(lastS‘𝑦), (lastS‘𝑥)} = {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)})
2524eleq1d 2814 . . . . . . . 8 (𝑦 = (𝑥 prefix (𝑁 + 1)) → ({(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸 ↔ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸))
2620, 22, 253anbi123d 1438 . . . . . . 7 (𝑦 = (𝑥 prefix (𝑁 + 1)) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) ↔ ((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)))
2726adantl 481 . . . . . 6 ((((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) ∧ 𝑦 = (𝑥 prefix (𝑁 + 1))) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) ↔ ((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)))
2819, 27rspcedv 3584 . . . . 5 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → (((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸) → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
291, 8, 12, 28mp3and 1466 . . . 4 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ (𝑥‘0) = 𝑃) → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸))
3029ex 412 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥‘0) = 𝑃 → ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
3121eqcoms 2738 . . . . . . . . 9 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → (𝑦‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3231eqeq1d 2732 . . . . . . . 8 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → ((𝑦‘0) = 𝑃 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃))
333eqcomd 2736 . . . . . . . . . . 11 ((𝑥𝑋𝑁 ∈ ℕ0) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3433ancoms 458 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
3534adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
36 eqeq2 2742 . . . . . . . . . 10 (𝑃 = ((𝑥 prefix (𝑁 + 1))‘0) → ((𝑥‘0) = 𝑃 ↔ (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)))
3736eqcoms 2738 . . . . . . . . 9 (((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 → ((𝑥‘0) = 𝑃 ↔ (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)))
3835, 37imbitrrid 246 . . . . . . . 8 (((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
3932, 38biimtrdi 253 . . . . . . 7 ((𝑥 prefix (𝑁 + 1)) = 𝑦 → ((𝑦‘0) = 𝑃 → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃)))
4039imp 406 . . . . . 6 (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
41403adant3 1132 . . . . 5 (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (𝑥‘0) = 𝑃))
4241com12 32 . . . 4 (((𝑁 ∈ ℕ0𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥‘0) = 𝑃))
4342rexlimdva 3135 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → (∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥‘0) = 𝑃))
4430, 43impbid 212 . 2 ((𝑁 ∈ ℕ0𝑥𝑋) → ((𝑥‘0) = 𝑃 ↔ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)))
4544rabbidva 3415 1 (𝑁 ∈ ℕ0 → {𝑥𝑋 ∣ (𝑥‘0) = 𝑃} = {𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  {cpr 4594  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  0cn0 12449  lastSclsw 14534   prefix cpfx 14642  Edgcedg 28981   WWalksN cwwlksn 29763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-lsw 14535  df-substr 14613  df-pfx 14643  df-wwlks 29767  df-wwlksn 29768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator