Proof of Theorem wwlksnextprop
Step | Hyp | Ref
| Expression |
1 | | eqidd 2759 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1))) |
2 | | wwlksnextprop.x |
. . . . . . . . 9
⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
3 | 2 | wwlksnextproplem1 27799 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0)) |
4 | 3 | ancoms 462 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0)) |
5 | 4 | adantr 484 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0)) |
6 | | eqeq2 2770 |
. . . . . . 7
⊢ ((𝑥‘0) = 𝑃 → (((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0) ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃)) |
7 | 6 | adantl 485 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → (((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0) ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃)) |
8 | 5, 7 | mpbid 235 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃) |
9 | | wwlksnextprop.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
10 | 2, 9 | wwlksnextproplem2 27800 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) →
{(lastS‘(𝑥 prefix
(𝑁 + 1))),
(lastS‘𝑥)} ∈
𝐸) |
11 | 10 | ancoms 462 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸) |
12 | 11 | adantr 484 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸) |
13 | | simpr 488 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
14 | 13 | adantr 484 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → 𝑥 ∈ 𝑋) |
15 | | simpr 488 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥‘0) = 𝑃) |
16 | | simpll 766 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → 𝑁 ∈
ℕ0) |
17 | | wwlksnextprop.y |
. . . . . . . 8
⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
18 | 2, 9, 17 | wwlksnextproplem3 27801 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ (𝑥‘0) = 𝑃 ∧ 𝑁 ∈ ℕ0) → (𝑥 prefix (𝑁 + 1)) ∈ 𝑌) |
19 | 14, 15, 16, 18 | syl3anc 1368 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → (𝑥 prefix (𝑁 + 1)) ∈ 𝑌) |
20 | | eqeq2 2770 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 prefix (𝑁 + 1)) → ((𝑥 prefix (𝑁 + 1)) = 𝑦 ↔ (𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)))) |
21 | | fveq1 6661 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥 prefix (𝑁 + 1)) → (𝑦‘0) = ((𝑥 prefix (𝑁 + 1))‘0)) |
22 | 21 | eqeq1d 2760 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 prefix (𝑁 + 1)) → ((𝑦‘0) = 𝑃 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃)) |
23 | | fveq2 6662 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥 prefix (𝑁 + 1)) → (lastS‘𝑦) = (lastS‘(𝑥 prefix (𝑁 + 1)))) |
24 | 23 | preq1d 4635 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥 prefix (𝑁 + 1)) → {(lastS‘𝑦), (lastS‘𝑥)} = {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)}) |
25 | 24 | eleq1d 2836 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 prefix (𝑁 + 1)) → ({(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸 ↔ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸)) |
26 | 20, 22, 25 | 3anbi123d 1433 |
. . . . . . 7
⊢ (𝑦 = (𝑥 prefix (𝑁 + 1)) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) ↔ ((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸))) |
27 | 26 | adantl 485 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) ∧ 𝑦 = (𝑥 prefix (𝑁 + 1))) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) ↔ ((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸))) |
28 | 19, 27 | rspcedv 3536 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → (((𝑥 prefix (𝑁 + 1)) = (𝑥 prefix (𝑁 + 1)) ∧ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 ∧ {(lastS‘(𝑥 prefix (𝑁 + 1))), (lastS‘𝑥)} ∈ 𝐸) → ∃𝑦 ∈ 𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸))) |
29 | 1, 8, 12, 28 | mp3and 1461 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ (𝑥‘0) = 𝑃) → ∃𝑦 ∈ 𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)) |
30 | 29 | ex 416 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) → ((𝑥‘0) = 𝑃 → ∃𝑦 ∈ 𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸))) |
31 | 21 | eqcoms 2766 |
. . . . . . . . 9
⊢ ((𝑥 prefix (𝑁 + 1)) = 𝑦 → (𝑦‘0) = ((𝑥 prefix (𝑁 + 1))‘0)) |
32 | 31 | eqeq1d 2760 |
. . . . . . . 8
⊢ ((𝑥 prefix (𝑁 + 1)) = 𝑦 → ((𝑦‘0) = 𝑃 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑃)) |
33 | 3 | eqcomd 2764 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)) |
34 | 33 | ancoms 462 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)) |
35 | 34 | adantr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0)) |
36 | | eqeq2 2770 |
. . . . . . . . . 10
⊢ (𝑃 = ((𝑥 prefix (𝑁 + 1))‘0) → ((𝑥‘0) = 𝑃 ↔ (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))) |
37 | 36 | eqcoms 2766 |
. . . . . . . . 9
⊢ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 → ((𝑥‘0) = 𝑃 ↔ (𝑥‘0) = ((𝑥 prefix (𝑁 + 1))‘0))) |
38 | 35, 37 | syl5ibr 249 |
. . . . . . . 8
⊢ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑃 → (((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝑥‘0) = 𝑃)) |
39 | 32, 38 | syl6bi 256 |
. . . . . . 7
⊢ ((𝑥 prefix (𝑁 + 1)) = 𝑦 → ((𝑦‘0) = 𝑃 → (((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝑥‘0) = 𝑃))) |
40 | 39 | imp 410 |
. . . . . 6
⊢ (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃) → (((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝑥‘0) = 𝑃)) |
41 | 40 | 3adant3 1129 |
. . . . 5
⊢ (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (((𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝑥‘0) = 𝑃)) |
42 | 41 | com12 32 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥‘0) = 𝑃)) |
43 | 42 | rexlimdva 3208 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) → (∃𝑦 ∈ 𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸) → (𝑥‘0) = 𝑃)) |
44 | 30, 43 | impbid 215 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ 𝑋) → ((𝑥‘0) = 𝑃 ↔ ∃𝑦 ∈ 𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸))) |
45 | 44 | rabbidva 3390 |
1
⊢ (𝑁 ∈ ℕ0
→ {𝑥 ∈ 𝑋 ∣ (𝑥‘0) = 𝑃} = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑌 ((𝑥 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑥)} ∈ 𝐸)}) |