Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfv | Structured version Visualization version GIF version |
Description: A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
funfv | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . . . 5 ⊢ (𝐹‘𝐴) ∈ V | |
2 | 1 | unisn 4858 | . . . 4 ⊢ ∪ {(𝐹‘𝐴)} = (𝐹‘𝐴) |
3 | eqid 2738 | . . . . . . 7 ⊢ dom 𝐹 = dom 𝐹 | |
4 | df-fn 6421 | . . . . . . 7 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
5 | 3, 4 | mpbiran2 706 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
6 | fnsnfv 6829 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
7 | 5, 6 | sylanbr 581 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
8 | 7 | unieqd 4850 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∪ {(𝐹‘𝐴)} = ∪ (𝐹 “ {𝐴})) |
9 | 2, 8 | eqtr3id 2793 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
10 | 9 | ex 412 | . 2 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴}))) |
11 | ndmfv 6786 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
12 | ndmima 6000 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = ∅) | |
13 | 12 | unieqd 4850 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ∪ (𝐹 “ {𝐴}) = ∪ ∅) |
14 | uni0 4866 | . . . 4 ⊢ ∪ ∅ = ∅ | |
15 | 13, 14 | eqtrdi 2795 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ∪ (𝐹 “ {𝐴}) = ∅) |
16 | 11, 15 | eqtr4d 2781 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
17 | 10, 16 | pm2.61d1 180 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 {csn 4558 ∪ cuni 4836 dom cdm 5580 “ cima 5583 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: funfv2 6838 fvun 6840 dffv2 6845 setrecsss 46292 |
Copyright terms: Public domain | W3C validator |