MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv Structured version   Visualization version   GIF version

Theorem funfv 6486
Description: A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))

Proof of Theorem funfv
StepHypRef Expression
1 fvex 6421 . . . . 5 (𝐹𝐴) ∈ V
21unisn 4646 . . . 4 {(𝐹𝐴)} = (𝐹𝐴)
3 eqid 2806 . . . . . . 7 dom 𝐹 = dom 𝐹
4 df-fn 6104 . . . . . . 7 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
53, 4mpbiran2 692 . . . . . 6 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
6 fnsnfv 6479 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
75, 6sylanbr 573 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
87unieqd 4640 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
92, 8syl5eqr 2854 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))
109ex 399 . 2 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴})))
11 ndmfv 6438 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
12 ndmima 5712 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = ∅)
1312unieqd 4640 . . . 4 𝐴 ∈ dom 𝐹 (𝐹 “ {𝐴}) = ∅)
14 uni0 4659 . . . 4 ∅ = ∅
1513, 14syl6eq 2856 . . 3 𝐴 ∈ dom 𝐹 (𝐹 “ {𝐴}) = ∅)
1611, 15eqtr4d 2843 . 2 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
1710, 16pm2.61d1 172 1 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2156  c0 4116  {csn 4370   cuni 4630  dom cdm 5311  cima 5314  Fun wfun 6095   Fn wfn 6096  cfv 6101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6064  df-fun 6103  df-fn 6104  df-fv 6109
This theorem is referenced by:  funfv2  6487  fvun  6489  dffv2  6492  setrecsss  43015
  Copyright terms: Public domain W3C validator