MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv Structured version   Visualization version   GIF version

Theorem funfv 7009
Description: A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))

Proof of Theorem funfv
StepHypRef Expression
1 fvex 6933 . . . . 5 (𝐹𝐴) ∈ V
21unisn 4950 . . . 4 {(𝐹𝐴)} = (𝐹𝐴)
3 eqid 2740 . . . . . . 7 dom 𝐹 = dom 𝐹
4 df-fn 6576 . . . . . . 7 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
53, 4mpbiran2 709 . . . . . 6 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
6 fnsnfv 7001 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
75, 6sylanbr 581 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
87unieqd 4944 . . . 4 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
92, 8eqtr3id 2794 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))
109ex 412 . 2 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴})))
11 ndmfv 6955 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
12 ndmima 6133 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = ∅)
1312unieqd 4944 . . . 4 𝐴 ∈ dom 𝐹 (𝐹 “ {𝐴}) = ∅)
14 uni0 4959 . . . 4 ∅ = ∅
1513, 14eqtrdi 2796 . . 3 𝐴 ∈ dom 𝐹 (𝐹 “ {𝐴}) = ∅)
1611, 15eqtr4d 2783 . 2 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
1710, 16pm2.61d1 180 1 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  c0 4352  {csn 4648   cuni 4931  dom cdm 5700  cima 5703  Fun wfun 6567   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  funfv2  7010  fvun  7012  dffv2  7017  setrecsss  48793
  Copyright terms: Public domain W3C validator