| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfv | Structured version Visualization version GIF version | ||
| Description: A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998.) |
| Ref | Expression |
|---|---|
| funfv | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6885 | . . . . 5 ⊢ (𝐹‘𝐴) ∈ V | |
| 2 | 1 | unisn 4899 | . . . 4 ⊢ ∪ {(𝐹‘𝐴)} = (𝐹‘𝐴) |
| 3 | eqid 2734 | . . . . . . 7 ⊢ dom 𝐹 = dom 𝐹 | |
| 4 | df-fn 6530 | . . . . . . 7 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
| 5 | 3, 4 | mpbiran2 710 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
| 6 | fnsnfv 6954 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
| 7 | 5, 6 | sylanbr 582 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 8 | 7 | unieqd 4893 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∪ {(𝐹‘𝐴)} = ∪ (𝐹 “ {𝐴})) |
| 9 | 2, 8 | eqtr3id 2783 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| 10 | 9 | ex 412 | . 2 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴}))) |
| 11 | ndmfv 6907 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 12 | ndmima 6087 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = ∅) | |
| 13 | 12 | unieqd 4893 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ∪ (𝐹 “ {𝐴}) = ∪ ∅) |
| 14 | uni0 4908 | . . . 4 ⊢ ∪ ∅ = ∅ | |
| 15 | 13, 14 | eqtrdi 2785 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ∪ (𝐹 “ {𝐴}) = ∅) |
| 16 | 11, 15 | eqtr4d 2772 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| 17 | 10, 16 | pm2.61d1 180 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∅c0 4306 {csn 4599 ∪ cuni 4880 dom cdm 5651 “ cima 5654 Fun wfun 6521 Fn wfn 6522 ‘cfv 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-fv 6535 |
| This theorem is referenced by: funfv2 6963 fvun 6965 dffv2 6970 setrecsss 49285 |
| Copyright terms: Public domain | W3C validator |