![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfv | Structured version Visualization version GIF version |
Description: A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
funfv | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . . . . 5 ⊢ (𝐹‘𝐴) ∈ V | |
2 | 1 | unisn 4950 | . . . 4 ⊢ ∪ {(𝐹‘𝐴)} = (𝐹‘𝐴) |
3 | eqid 2740 | . . . . . . 7 ⊢ dom 𝐹 = dom 𝐹 | |
4 | df-fn 6576 | . . . . . . 7 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
5 | 3, 4 | mpbiran2 709 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
6 | fnsnfv 7001 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
7 | 5, 6 | sylanbr 581 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
8 | 7 | unieqd 4944 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∪ {(𝐹‘𝐴)} = ∪ (𝐹 “ {𝐴})) |
9 | 2, 8 | eqtr3id 2794 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
10 | 9 | ex 412 | . 2 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴}))) |
11 | ndmfv 6955 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
12 | ndmima 6133 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = ∅) | |
13 | 12 | unieqd 4944 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ∪ (𝐹 “ {𝐴}) = ∪ ∅) |
14 | uni0 4959 | . . . 4 ⊢ ∪ ∅ = ∅ | |
15 | 13, 14 | eqtrdi 2796 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ∪ (𝐹 “ {𝐴}) = ∅) |
16 | 11, 15 | eqtr4d 2783 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
17 | 10, 16 | pm2.61d1 180 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 {csn 4648 ∪ cuni 4931 dom cdm 5700 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: funfv2 7010 fvun 7012 dffv2 7017 setrecsss 48793 |
Copyright terms: Public domain | W3C validator |