| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfv | Structured version Visualization version GIF version | ||
| Description: A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998.) |
| Ref | Expression |
|---|---|
| funfv | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6844 | . . . . 5 ⊢ (𝐹‘𝐴) ∈ V | |
| 2 | 1 | unisn 4879 | . . . 4 ⊢ ∪ {(𝐹‘𝐴)} = (𝐹‘𝐴) |
| 3 | eqid 2733 | . . . . . . 7 ⊢ dom 𝐹 = dom 𝐹 | |
| 4 | df-fn 6492 | . . . . . . 7 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
| 5 | 3, 4 | mpbiran2 710 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
| 6 | fnsnfv 6910 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
| 7 | 5, 6 | sylanbr 582 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 8 | 7 | unieqd 4873 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∪ {(𝐹‘𝐴)} = ∪ (𝐹 “ {𝐴})) |
| 9 | 2, 8 | eqtr3id 2782 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| 10 | 9 | ex 412 | . 2 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴}))) |
| 11 | ndmfv 6863 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 12 | ndmima 6059 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = ∅) | |
| 13 | 12 | unieqd 4873 | . . . 4 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ∪ (𝐹 “ {𝐴}) = ∪ ∅) |
| 14 | uni0 4888 | . . . 4 ⊢ ∪ ∅ = ∅ | |
| 15 | 13, 14 | eqtrdi 2784 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → ∪ (𝐹 “ {𝐴}) = ∅) |
| 16 | 11, 15 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| 17 | 10, 16 | pm2.61d1 180 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {csn 4577 ∪ cuni 4860 dom cdm 5621 “ cima 5624 Fun wfun 6483 Fn wfn 6484 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: funfv2 6919 fvun 6921 dffv2 6926 setrecsss 49862 |
| Copyright terms: Public domain | W3C validator |