![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imafi | Structured version Visualization version GIF version |
Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
imafi | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmres 6265 | . 2 ⊢ (𝐹 “ dom (𝐹 ↾ 𝑋)) = (𝐹 “ 𝑋) | |
2 | simpr 484 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) | |
3 | dmres 6041 | . . . . 5 ⊢ dom (𝐹 ↾ 𝑋) = (𝑋 ∩ dom 𝐹) | |
4 | inss1 4258 | . . . . 5 ⊢ (𝑋 ∩ dom 𝐹) ⊆ 𝑋 | |
5 | 3, 4 | eqsstri 4043 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ 𝑋 |
6 | ssfi 9240 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ dom (𝐹 ↾ 𝑋) ⊆ 𝑋) → dom (𝐹 ↾ 𝑋) ∈ Fin) | |
7 | 2, 5, 6 | sylancl 585 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ∈ Fin) |
8 | resss 6031 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
9 | dmss 5927 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
10 | 8, 9 | mp1i 13 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) |
11 | fores 6844 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) | |
12 | 10, 11 | syldan 590 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) |
13 | fofi 9379 | . . 3 ⊢ ((dom (𝐹 ↾ 𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) | |
14 | 7, 12, 13 | syl2anc 583 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) |
15 | 1, 14 | eqeltrrid 2849 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 dom cdm 5700 ↾ cres 5702 “ cima 5703 Fun wfun 6567 –onto→wfo 6571 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-fin 9007 |
This theorem is referenced by: pwfir 9383 pwfilem 9384 fissuni 9427 fipreima 9428 fsuppcolem 9470 cmpfi 23437 mdegldg 26125 mdegcl 26128 madefi 27968 oldfi 27969 trlsegvdeglem6 30257 fsuppcurry1 32739 fsuppcurry2 32740 elrspunidl 33421 locfinreflem 33786 zarcmplem 33827 sibfof 34305 eulerpartlemgf 34344 fineqvrep 35071 poimirlem30 37610 ftc1anclem7 37659 ftc1anc 37661 aks6d1c2 42087 aks6d1c6lem5 42134 elrfirn 42651 sge0f1o 46303 |
Copyright terms: Public domain | W3C validator |