| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imafi | Structured version Visualization version GIF version | ||
| Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| imafi | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmres 6210 | . 2 ⊢ (𝐹 “ dom (𝐹 ↾ 𝑋)) = (𝐹 “ 𝑋) | |
| 2 | simpr 484 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) | |
| 3 | dmres 5986 | . . . . 5 ⊢ dom (𝐹 ↾ 𝑋) = (𝑋 ∩ dom 𝐹) | |
| 4 | inss1 4203 | . . . . 5 ⊢ (𝑋 ∩ dom 𝐹) ⊆ 𝑋 | |
| 5 | 3, 4 | eqsstri 3996 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ 𝑋 |
| 6 | ssfi 9143 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ dom (𝐹 ↾ 𝑋) ⊆ 𝑋) → dom (𝐹 ↾ 𝑋) ∈ Fin) | |
| 7 | 2, 5, 6 | sylancl 586 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ∈ Fin) |
| 8 | resss 5975 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
| 9 | dmss 5869 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
| 10 | 8, 9 | mp1i 13 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) |
| 11 | fores 6785 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) | |
| 12 | 10, 11 | syldan 591 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) |
| 13 | fofi 9269 | . . 3 ⊢ ((dom (𝐹 ↾ 𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) | |
| 14 | 7, 12, 13 | syl2anc 584 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) |
| 15 | 1, 14 | eqeltrrid 2834 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 dom cdm 5641 ↾ cres 5643 “ cima 5644 Fun wfun 6508 –onto→wfo 6512 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-fin 8925 |
| This theorem is referenced by: pwfir 9273 pwfilem 9274 fissuni 9315 fipreima 9316 fsuppcolem 9359 cmpfi 23302 mdegldg 25978 mdegcl 25981 madefi 27831 oldfi 27832 trlsegvdeglem6 30161 fsuppcurry1 32655 fsuppcurry2 32656 elrgspnlem2 33201 elrgspnsubrunlem2 33206 elrspunidl 33406 locfinreflem 33837 zarcmplem 33878 sibfof 34338 eulerpartlemgf 34377 fineqvrep 35092 poimirlem30 37651 ftc1anclem7 37700 ftc1anc 37702 aks6d1c2 42125 aks6d1c6lem5 42172 elrfirn 42690 sge0f1o 46387 |
| Copyright terms: Public domain | W3C validator |