MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafi Structured version   Visualization version   GIF version

Theorem imafi 8920
Description: Images of finite sets are finite. For a shorter proof using ax-pow 5283, see imafiALT 9042. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid ax-pow 5283. (Revised by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
imafi ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)

Proof of Theorem imafi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaeq2 5954 . . . . 5 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 “ ∅))
21eleq1d 2823 . . . 4 (𝑥 = ∅ → ((𝐹𝑥) ∈ Fin ↔ (𝐹 “ ∅) ∈ Fin))
32imbi2d 340 . . 3 (𝑥 = ∅ → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ ∅) ∈ Fin)))
4 imaeq2 5954 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
54eleq1d 2823 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹𝑦) ∈ Fin)))
7 imaeq2 5954 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 “ (𝑦 ∪ {𝑧})))
87eleq1d 2823 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ∈ Fin ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
98imbi2d 340 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)))
10 imaeq2 5954 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1110eleq1d 2823 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑋) ∈ Fin))
1211imbi2d 340 . . 3 (𝑥 = 𝑋 → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹𝑋) ∈ Fin)))
13 ima0 5974 . . . . 5 (𝐹 “ ∅) = ∅
14 0fin 8916 . . . . 5 ∅ ∈ Fin
1513, 14eqeltri 2835 . . . 4 (𝐹 “ ∅) ∈ Fin
1615a1i 11 . . 3 (Fun 𝐹 → (𝐹 “ ∅) ∈ Fin)
17 funfn 6448 . . . . . . . . . 10 (Fun 𝐹𝐹 Fn dom 𝐹)
18 fnsnfv 6829 . . . . . . . . . 10 ((𝐹 Fn dom 𝐹𝑧 ∈ dom 𝐹) → {(𝐹𝑧)} = (𝐹 “ {𝑧}))
1917, 18sylanb 580 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ dom 𝐹) → {(𝐹𝑧)} = (𝐹 “ {𝑧}))
20 snfi 8788 . . . . . . . . 9 {(𝐹𝑧)} ∈ Fin
2119, 20eqeltrrdi 2848 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin)
22 ndmima 6000 . . . . . . . . . 10 𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) = ∅)
2322, 14eqeltrdi 2847 . . . . . . . . 9 𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) ∈ Fin)
2423adantl 481 . . . . . . . 8 ((Fun 𝐹 ∧ ¬ 𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin)
2521, 24pm2.61dan 809 . . . . . . 7 (Fun 𝐹 → (𝐹 “ {𝑧}) ∈ Fin)
26 imaundi 6042 . . . . . . . 8 (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧}))
27 unfi 8917 . . . . . . . 8 (((𝐹𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 “ {𝑧})) ∈ Fin)
2826, 27eqeltrid 2843 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)
2925, 28sylan2 592 . . . . . 6 (((𝐹𝑦) ∈ Fin ∧ Fun 𝐹) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)
3029expcom 413 . . . . 5 (Fun 𝐹 → ((𝐹𝑦) ∈ Fin → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
3130a2i 14 . . . 4 ((Fun 𝐹 → (𝐹𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
3231a1i 11 . . 3 (𝑦 ∈ Fin → ((Fun 𝐹 → (𝐹𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)))
333, 6, 9, 12, 16, 32findcard2 8909 . 2 (𝑋 ∈ Fin → (Fun 𝐹 → (𝐹𝑋) ∈ Fin))
3433impcom 407 1 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  c0 4253  {csn 4558  dom cdm 5580  cima 5583  Fun wfun 6412   Fn wfn 6413  cfv 6418  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695
This theorem is referenced by:  pwfir  8921  pwfilem  8922  fissuni  9054  fipreima  9055  fsuppcolem  9090  cmpfi  22467  mdegldg  25136  mdegcl  25139  trlsegvdeglem6  28490  fsuppcurry1  30962  fsuppcurry2  30963  elrspunidl  31508  locfinreflem  31692  zarcmplem  31733  sibfof  32207  eulerpartlemgf  32246  fineqvrep  32964  poimirlem30  35734  ftc1anclem7  35783  ftc1anc  35785  elrfirn  40433  sge0f1o  43810
  Copyright terms: Public domain W3C validator