| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imafi | Structured version Visualization version GIF version | ||
| Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| imafi | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmres 6195 | . 2 ⊢ (𝐹 “ dom (𝐹 ↾ 𝑋)) = (𝐹 “ 𝑋) | |
| 2 | simpr 484 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) | |
| 3 | dmres 5972 | . . . . 5 ⊢ dom (𝐹 ↾ 𝑋) = (𝑋 ∩ dom 𝐹) | |
| 4 | inss1 4196 | . . . . 5 ⊢ (𝑋 ∩ dom 𝐹) ⊆ 𝑋 | |
| 5 | 3, 4 | eqsstri 3990 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ 𝑋 |
| 6 | ssfi 9114 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ dom (𝐹 ↾ 𝑋) ⊆ 𝑋) → dom (𝐹 ↾ 𝑋) ∈ Fin) | |
| 7 | 2, 5, 6 | sylancl 586 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ∈ Fin) |
| 8 | resss 5961 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
| 9 | dmss 5856 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
| 10 | 8, 9 | mp1i 13 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) |
| 11 | fores 6764 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) | |
| 12 | 10, 11 | syldan 591 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) |
| 13 | fofi 9238 | . . 3 ⊢ ((dom (𝐹 ↾ 𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) | |
| 14 | 7, 12, 13 | syl2anc 584 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) |
| 15 | 1, 14 | eqeltrrid 2833 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 dom cdm 5631 ↾ cres 5633 “ cima 5634 Fun wfun 6493 –onto→wfo 6497 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-en 8896 df-dom 8897 df-fin 8899 |
| This theorem is referenced by: pwfir 9242 pwfilem 9243 fissuni 9284 fipreima 9285 fsuppcolem 9328 cmpfi 23271 mdegldg 25947 mdegcl 25950 madefi 27800 oldfi 27801 trlsegvdeglem6 30127 fsuppcurry1 32621 fsuppcurry2 32622 elrgspnlem2 33167 elrgspnsubrunlem2 33172 elrspunidl 33372 locfinreflem 33803 zarcmplem 33844 sibfof 34304 eulerpartlemgf 34343 fineqvrep 35058 poimirlem30 37617 ftc1anclem7 37666 ftc1anc 37668 aks6d1c2 42091 aks6d1c6lem5 42138 elrfirn 42656 sge0f1o 46353 |
| Copyright terms: Public domain | W3C validator |