MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafi Structured version   Visualization version   GIF version

Theorem imafi 9119
Description: Images of finite sets are finite. For a shorter proof using ax-pow 5320, see imafiALT 9289. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
imafi ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)

Proof of Theorem imafi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaeq2 6009 . . . . 5 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 “ ∅))
21eleq1d 2822 . . . 4 (𝑥 = ∅ → ((𝐹𝑥) ∈ Fin ↔ (𝐹 “ ∅) ∈ Fin))
32imbi2d 340 . . 3 (𝑥 = ∅ → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ ∅) ∈ Fin)))
4 imaeq2 6009 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
54eleq1d 2822 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹𝑦) ∈ Fin)))
7 imaeq2 6009 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 “ (𝑦 ∪ {𝑧})))
87eleq1d 2822 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ∈ Fin ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
98imbi2d 340 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)))
10 imaeq2 6009 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1110eleq1d 2822 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑋) ∈ Fin))
1211imbi2d 340 . . 3 (𝑥 = 𝑋 → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹𝑋) ∈ Fin)))
13 ima0 6029 . . . . 5 (𝐹 “ ∅) = ∅
14 0fin 9115 . . . . 5 ∅ ∈ Fin
1513, 14eqeltri 2834 . . . 4 (𝐹 “ ∅) ∈ Fin
1615a1i 11 . . 3 (Fun 𝐹 → (𝐹 “ ∅) ∈ Fin)
17 funfn 6531 . . . . . . . . . 10 (Fun 𝐹𝐹 Fn dom 𝐹)
18 fnsnfv 6920 . . . . . . . . . 10 ((𝐹 Fn dom 𝐹𝑧 ∈ dom 𝐹) → {(𝐹𝑧)} = (𝐹 “ {𝑧}))
1917, 18sylanb 581 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ dom 𝐹) → {(𝐹𝑧)} = (𝐹 “ {𝑧}))
20 snfi 8988 . . . . . . . . 9 {(𝐹𝑧)} ∈ Fin
2119, 20eqeltrrdi 2847 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin)
22 ndmima 6055 . . . . . . . . . 10 𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) = ∅)
2322, 14eqeltrdi 2846 . . . . . . . . 9 𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) ∈ Fin)
2423adantl 482 . . . . . . . 8 ((Fun 𝐹 ∧ ¬ 𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin)
2521, 24pm2.61dan 811 . . . . . . 7 (Fun 𝐹 → (𝐹 “ {𝑧}) ∈ Fin)
26 imaundi 6102 . . . . . . . 8 (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧}))
27 unfi 9116 . . . . . . . 8 (((𝐹𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 “ {𝑧})) ∈ Fin)
2826, 27eqeltrid 2842 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)
2925, 28sylan2 593 . . . . . 6 (((𝐹𝑦) ∈ Fin ∧ Fun 𝐹) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)
3029expcom 414 . . . . 5 (Fun 𝐹 → ((𝐹𝑦) ∈ Fin → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
3130a2i 14 . . . 4 ((Fun 𝐹 → (𝐹𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
3231a1i 11 . . 3 (𝑦 ∈ Fin → ((Fun 𝐹 → (𝐹𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)))
333, 6, 9, 12, 16, 32findcard2 9108 . 2 (𝑋 ∈ Fin → (Fun 𝐹 → (𝐹𝑋) ∈ Fin))
3433impcom 408 1 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  cun 3908  c0 4282  {csn 4586  dom cdm 5633  cima 5636  Fun wfun 6490   Fn wfn 6491  cfv 6496  Fincfn 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-en 8884  df-fin 8887
This theorem is referenced by:  pwfir  9120  pwfilem  9121  fissuni  9301  fipreima  9302  fsuppcolem  9337  cmpfi  22759  mdegldg  25431  mdegcl  25434  trlsegvdeglem6  29169  fsuppcurry1  31642  fsuppcurry2  31643  elrspunidl  32203  locfinreflem  32421  zarcmplem  32462  sibfof  32940  eulerpartlemgf  32979  fineqvrep  33696  poimirlem30  36108  ftc1anclem7  36157  ftc1anc  36159  elrfirn  41004  sge0f1o  44613
  Copyright terms: Public domain W3C validator