| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imafi | Structured version Visualization version GIF version | ||
| Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| imafi | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmres 6207 | . 2 ⊢ (𝐹 “ dom (𝐹 ↾ 𝑋)) = (𝐹 “ 𝑋) | |
| 2 | simpr 484 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) | |
| 3 | dmres 5983 | . . . . 5 ⊢ dom (𝐹 ↾ 𝑋) = (𝑋 ∩ dom 𝐹) | |
| 4 | inss1 4200 | . . . . 5 ⊢ (𝑋 ∩ dom 𝐹) ⊆ 𝑋 | |
| 5 | 3, 4 | eqsstri 3993 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ 𝑋 |
| 6 | ssfi 9137 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ dom (𝐹 ↾ 𝑋) ⊆ 𝑋) → dom (𝐹 ↾ 𝑋) ∈ Fin) | |
| 7 | 2, 5, 6 | sylancl 586 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ∈ Fin) |
| 8 | resss 5972 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
| 9 | dmss 5866 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
| 10 | 8, 9 | mp1i 13 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) |
| 11 | fores 6782 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) | |
| 12 | 10, 11 | syldan 591 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) |
| 13 | fofi 9262 | . . 3 ⊢ ((dom (𝐹 ↾ 𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) | |
| 14 | 7, 12, 13 | syl2anc 584 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) |
| 15 | 1, 14 | eqeltrrid 2833 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 dom cdm 5638 ↾ cres 5640 “ cima 5641 Fun wfun 6505 –onto→wfo 6509 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-dom 8920 df-fin 8922 |
| This theorem is referenced by: pwfir 9266 pwfilem 9267 fissuni 9308 fipreima 9309 fsuppcolem 9352 cmpfi 23295 mdegldg 25971 mdegcl 25974 madefi 27824 oldfi 27825 trlsegvdeglem6 30154 fsuppcurry1 32648 fsuppcurry2 32649 elrgspnlem2 33194 elrgspnsubrunlem2 33199 elrspunidl 33399 locfinreflem 33830 zarcmplem 33871 sibfof 34331 eulerpartlemgf 34370 fineqvrep 35085 poimirlem30 37644 ftc1anclem7 37693 ftc1anc 37695 aks6d1c2 42118 aks6d1c6lem5 42165 elrfirn 42683 sge0f1o 46380 |
| Copyright terms: Public domain | W3C validator |