MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafi Structured version   Visualization version   GIF version

Theorem imafi 8501
Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
imafi ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)

Proof of Theorem imafi
StepHypRef Expression
1 imadmres 5846 . 2 (𝐹 “ dom (𝐹𝑋)) = (𝐹𝑋)
2 simpr 478 . . . 4 ((Fun 𝐹𝑋 ∈ Fin) → 𝑋 ∈ Fin)
3 dmres 5629 . . . . 5 dom (𝐹𝑋) = (𝑋 ∩ dom 𝐹)
4 inss1 4028 . . . . 5 (𝑋 ∩ dom 𝐹) ⊆ 𝑋
53, 4eqsstri 3831 . . . 4 dom (𝐹𝑋) ⊆ 𝑋
6 ssfi 8422 . . . 4 ((𝑋 ∈ Fin ∧ dom (𝐹𝑋) ⊆ 𝑋) → dom (𝐹𝑋) ∈ Fin)
72, 5, 6sylancl 581 . . 3 ((Fun 𝐹𝑋 ∈ Fin) → dom (𝐹𝑋) ∈ Fin)
8 resss 5632 . . . . 5 (𝐹𝑋) ⊆ 𝐹
9 dmss 5526 . . . . 5 ((𝐹𝑋) ⊆ 𝐹 → dom (𝐹𝑋) ⊆ dom 𝐹)
108, 9mp1i 13 . . . 4 ((Fun 𝐹𝑋 ∈ Fin) → dom (𝐹𝑋) ⊆ dom 𝐹)
11 fores 6341 . . . 4 ((Fun 𝐹 ∧ dom (𝐹𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋)))
1210, 11syldan 586 . . 3 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋)))
13 fofi 8494 . . 3 ((dom (𝐹𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋))) → (𝐹 “ dom (𝐹𝑋)) ∈ Fin)
147, 12, 13syl2anc 580 . 2 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹 “ dom (𝐹𝑋)) ∈ Fin)
151, 14syl5eqelr 2883 1 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  cin 3768  wss 3769  dom cdm 5312  cres 5314  cima 5315  Fun wfun 6095  ontowfo 6099  Fincfn 8195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-om 7300  df-1o 7799  df-er 7982  df-en 8196  df-dom 8197  df-fin 8199
This theorem is referenced by:  fissuni  8513  fipreima  8514  fsuppcolem  8548  cmpfi  21540  mdegldg  24167  mdegcl  24170  trlsegvdeglem6  27570  locfinreflem  30423  sibfof  30918  eulerpartlemgf  30957  poimirlem30  33928  ftc1anclem7  33979  ftc1anc  33981  elrfirn  38044  sge0f1o  41342
  Copyright terms: Public domain W3C validator