Step | Hyp | Ref
| Expression |
1 | | imaeq2 5954 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐹 “ 𝑥) = (𝐹 “ ∅)) |
2 | 1 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐹 “ 𝑥) ∈ Fin ↔ (𝐹 “ ∅) ∈
Fin)) |
3 | 2 | imbi2d 340 |
. . 3
⊢ (𝑥 = ∅ → ((Fun 𝐹 → (𝐹 “ 𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ ∅) ∈
Fin))) |
4 | | imaeq2 5954 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐹 “ 𝑥) = (𝐹 “ 𝑦)) |
5 | 4 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐹 “ 𝑥) ∈ Fin ↔ (𝐹 “ 𝑦) ∈ Fin)) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((Fun 𝐹 → (𝐹 “ 𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ 𝑦) ∈ Fin))) |
7 | | imaeq2 5954 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹 “ 𝑥) = (𝐹 “ (𝑦 ∪ {𝑧}))) |
8 | 7 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 “ 𝑥) ∈ Fin ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)) |
9 | 8 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((Fun 𝐹 → (𝐹 “ 𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))) |
10 | | imaeq2 5954 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐹 “ 𝑥) = (𝐹 “ 𝑋)) |
11 | 10 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝐹 “ 𝑥) ∈ Fin ↔ (𝐹 “ 𝑋) ∈ Fin)) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑋 → ((Fun 𝐹 → (𝐹 “ 𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ 𝑋) ∈ Fin))) |
13 | | ima0 5974 |
. . . . 5
⊢ (𝐹 “ ∅) =
∅ |
14 | | 0fin 8916 |
. . . . 5
⊢ ∅
∈ Fin |
15 | 13, 14 | eqeltri 2835 |
. . . 4
⊢ (𝐹 “ ∅) ∈
Fin |
16 | 15 | a1i 11 |
. . 3
⊢ (Fun
𝐹 → (𝐹 “ ∅) ∈
Fin) |
17 | | funfn 6448 |
. . . . . . . . . 10
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
18 | | fnsnfv 6829 |
. . . . . . . . . 10
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑧 ∈ dom 𝐹) → {(𝐹‘𝑧)} = (𝐹 “ {𝑧})) |
19 | 17, 18 | sylanb 580 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → {(𝐹‘𝑧)} = (𝐹 “ {𝑧})) |
20 | | snfi 8788 |
. . . . . . . . 9
⊢ {(𝐹‘𝑧)} ∈ Fin |
21 | 19, 20 | eqeltrrdi 2848 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin) |
22 | | ndmima 6000 |
. . . . . . . . . 10
⊢ (¬
𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) = ∅) |
23 | 22, 14 | eqeltrdi 2847 |
. . . . . . . . 9
⊢ (¬
𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) ∈ Fin) |
24 | 23 | adantl 481 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ¬ 𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin) |
25 | 21, 24 | pm2.61dan 809 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝐹 “ {𝑧}) ∈ Fin) |
26 | | imaundi 6042 |
. . . . . . . 8
⊢ (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹 “ 𝑦) ∪ (𝐹 “ {𝑧})) |
27 | | unfi 8917 |
. . . . . . . 8
⊢ (((𝐹 “ 𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → ((𝐹 “ 𝑦) ∪ (𝐹 “ {𝑧})) ∈ Fin) |
28 | 26, 27 | eqeltrid 2843 |
. . . . . . 7
⊢ (((𝐹 “ 𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin) |
29 | 25, 28 | sylan2 592 |
. . . . . 6
⊢ (((𝐹 “ 𝑦) ∈ Fin ∧ Fun 𝐹) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin) |
30 | 29 | expcom 413 |
. . . . 5
⊢ (Fun
𝐹 → ((𝐹 “ 𝑦) ∈ Fin → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)) |
31 | 30 | a2i 14 |
. . . 4
⊢ ((Fun
𝐹 → (𝐹 “ 𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)) |
32 | 31 | a1i 11 |
. . 3
⊢ (𝑦 ∈ Fin → ((Fun 𝐹 → (𝐹 “ 𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))) |
33 | 3, 6, 9, 12, 16, 32 | findcard2 8909 |
. 2
⊢ (𝑋 ∈ Fin → (Fun 𝐹 → (𝐹 “ 𝑋) ∈ Fin)) |
34 | 33 | impcom 407 |
1
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |