MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafi Structured version   Visualization version   GIF version

Theorem imafi 9210
Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
imafi ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)

Proof of Theorem imafi
StepHypRef Expression
1 imadmres 6189 . 2 (𝐹 “ dom (𝐹𝑋)) = (𝐹𝑋)
2 simpr 484 . . . 4 ((Fun 𝐹𝑋 ∈ Fin) → 𝑋 ∈ Fin)
3 dmres 5968 . . . . 5 dom (𝐹𝑋) = (𝑋 ∩ dom 𝐹)
4 inss1 4186 . . . . 5 (𝑋 ∩ dom 𝐹) ⊆ 𝑋
53, 4eqsstri 3977 . . . 4 dom (𝐹𝑋) ⊆ 𝑋
6 ssfi 9093 . . . 4 ((𝑋 ∈ Fin ∧ dom (𝐹𝑋) ⊆ 𝑋) → dom (𝐹𝑋) ∈ Fin)
72, 5, 6sylancl 586 . . 3 ((Fun 𝐹𝑋 ∈ Fin) → dom (𝐹𝑋) ∈ Fin)
8 resss 5957 . . . . 5 (𝐹𝑋) ⊆ 𝐹
9 dmss 5848 . . . . 5 ((𝐹𝑋) ⊆ 𝐹 → dom (𝐹𝑋) ⊆ dom 𝐹)
108, 9mp1i 13 . . . 4 ((Fun 𝐹𝑋 ∈ Fin) → dom (𝐹𝑋) ⊆ dom 𝐹)
11 fores 6753 . . . 4 ((Fun 𝐹 ∧ dom (𝐹𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋)))
1210, 11syldan 591 . . 3 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋)))
13 fofi 9208 . . 3 ((dom (𝐹𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋))) → (𝐹 “ dom (𝐹𝑋)) ∈ Fin)
147, 12, 13syl2anc 584 . 2 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹 “ dom (𝐹𝑋)) ∈ Fin)
151, 14eqeltrrid 2838 1 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  cin 3897  wss 3898  dom cdm 5621  cres 5623  cima 5624  Fun wfun 6483  ontowfo 6487  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-1o 8394  df-en 8880  df-dom 8881  df-fin 8883
This theorem is referenced by:  pwfir  9212  pwfilem  9213  fissuni  9252  fipreima  9253  fsuppcolem  9296  cmpfi  23343  mdegldg  26018  mdegcl  26021  madefi  27878  oldfi  27879  trlsegvdeglem6  30226  fsuppcurry1  32731  fsuppcurry2  32732  elrgspnlem2  33253  elrgspnsubrunlem2  33258  elrspunidl  33437  extvfvcl  33629  esplympl  33653  locfinreflem  33925  zarcmplem  33966  sibfof  34425  eulerpartlemgf  34464  fineqvrep  35209  poimirlem30  37763  ftc1anclem7  37812  ftc1anc  37814  aks6d1c2  42296  aks6d1c6lem5  42343  elrfirn  42852  sge0f1o  46542
  Copyright terms: Public domain W3C validator