| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imafi | Structured version Visualization version GIF version | ||
| Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| imafi | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmres 6187 | . 2 ⊢ (𝐹 “ dom (𝐹 ↾ 𝑋)) = (𝐹 “ 𝑋) | |
| 2 | simpr 484 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin) | |
| 3 | dmres 5967 | . . . . 5 ⊢ dom (𝐹 ↾ 𝑋) = (𝑋 ∩ dom 𝐹) | |
| 4 | inss1 4190 | . . . . 5 ⊢ (𝑋 ∩ dom 𝐹) ⊆ 𝑋 | |
| 5 | 3, 4 | eqsstri 3984 | . . . 4 ⊢ dom (𝐹 ↾ 𝑋) ⊆ 𝑋 |
| 6 | ssfi 9097 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ dom (𝐹 ↾ 𝑋) ⊆ 𝑋) → dom (𝐹 ↾ 𝑋) ∈ Fin) | |
| 7 | 2, 5, 6 | sylancl 586 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ∈ Fin) |
| 8 | resss 5956 | . . . . 5 ⊢ (𝐹 ↾ 𝑋) ⊆ 𝐹 | |
| 9 | dmss 5849 | . . . . 5 ⊢ ((𝐹 ↾ 𝑋) ⊆ 𝐹 → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) | |
| 10 | 8, 9 | mp1i 13 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) |
| 11 | fores 6750 | . . . 4 ⊢ ((Fun 𝐹 ∧ dom (𝐹 ↾ 𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) | |
| 12 | 10, 11 | syldan 591 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) |
| 13 | fofi 9220 | . . 3 ⊢ ((dom (𝐹 ↾ 𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹 ↾ 𝑋)):dom (𝐹 ↾ 𝑋)–onto→(𝐹 “ dom (𝐹 ↾ 𝑋))) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) | |
| 14 | 7, 12, 13 | syl2anc 584 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ dom (𝐹 ↾ 𝑋)) ∈ Fin) |
| 15 | 1, 14 | eqeltrrid 2833 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 dom cdm 5623 ↾ cres 5625 “ cima 5626 Fun wfun 6480 –onto→wfo 6484 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-en 8880 df-dom 8881 df-fin 8883 |
| This theorem is referenced by: pwfir 9224 pwfilem 9225 fissuni 9266 fipreima 9267 fsuppcolem 9310 cmpfi 23311 mdegldg 25987 mdegcl 25990 madefi 27845 oldfi 27846 trlsegvdeglem6 30187 fsuppcurry1 32681 fsuppcurry2 32682 elrgspnlem2 33196 elrgspnsubrunlem2 33201 elrspunidl 33378 locfinreflem 33809 zarcmplem 33850 sibfof 34310 eulerpartlemgf 34349 fineqvrep 35072 poimirlem30 37632 ftc1anclem7 37681 ftc1anc 37683 aks6d1c2 42106 aks6d1c6lem5 42153 elrfirn 42671 sge0f1o 46367 |
| Copyright terms: Public domain | W3C validator |