MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafi Structured version   Visualization version   GIF version

Theorem imafi 9351
Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
imafi ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)

Proof of Theorem imafi
StepHypRef Expression
1 imadmres 6256 . 2 (𝐹 “ dom (𝐹𝑋)) = (𝐹𝑋)
2 simpr 484 . . . 4 ((Fun 𝐹𝑋 ∈ Fin) → 𝑋 ∈ Fin)
3 dmres 6032 . . . . 5 dom (𝐹𝑋) = (𝑋 ∩ dom 𝐹)
4 inss1 4245 . . . . 5 (𝑋 ∩ dom 𝐹) ⊆ 𝑋
53, 4eqsstri 4030 . . . 4 dom (𝐹𝑋) ⊆ 𝑋
6 ssfi 9212 . . . 4 ((𝑋 ∈ Fin ∧ dom (𝐹𝑋) ⊆ 𝑋) → dom (𝐹𝑋) ∈ Fin)
72, 5, 6sylancl 586 . . 3 ((Fun 𝐹𝑋 ∈ Fin) → dom (𝐹𝑋) ∈ Fin)
8 resss 6022 . . . . 5 (𝐹𝑋) ⊆ 𝐹
9 dmss 5916 . . . . 5 ((𝐹𝑋) ⊆ 𝐹 → dom (𝐹𝑋) ⊆ dom 𝐹)
108, 9mp1i 13 . . . 4 ((Fun 𝐹𝑋 ∈ Fin) → dom (𝐹𝑋) ⊆ dom 𝐹)
11 fores 6831 . . . 4 ((Fun 𝐹 ∧ dom (𝐹𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋)))
1210, 11syldan 591 . . 3 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋)))
13 fofi 9349 . . 3 ((dom (𝐹𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋))) → (𝐹 “ dom (𝐹𝑋)) ∈ Fin)
147, 12, 13syl2anc 584 . 2 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹 “ dom (𝐹𝑋)) ∈ Fin)
151, 14eqeltrrid 2844 1 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  cin 3962  wss 3963  dom cdm 5689  cres 5691  cima 5692  Fun wfun 6557  ontowfo 6561  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-dom 8986  df-fin 8988
This theorem is referenced by:  pwfir  9353  pwfilem  9354  fissuni  9395  fipreima  9396  fsuppcolem  9439  cmpfi  23432  mdegldg  26120  mdegcl  26123  madefi  27965  oldfi  27966  trlsegvdeglem6  30254  fsuppcurry1  32743  fsuppcurry2  32744  elrgspnlem2  33233  elrspunidl  33436  locfinreflem  33801  zarcmplem  33842  sibfof  34322  eulerpartlemgf  34361  fineqvrep  35088  poimirlem30  37637  ftc1anclem7  37686  ftc1anc  37688  aks6d1c2  42112  aks6d1c6lem5  42159  elrfirn  42683  sge0f1o  46338
  Copyright terms: Public domain W3C validator