![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmovordi | Structured version Visualization version GIF version |
Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
ndmovordi.2 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmovordi.4 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
ndmovordi.5 | ⊢ ¬ ∅ ∈ 𝑆 |
ndmovordi.6 | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
Ref | Expression |
---|---|
ndmovordi | ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmovordi.4 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
2 | 1 | brel 5765 | . . . 4 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆)) |
3 | 2 | simpld 494 | . . 3 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐶𝐹𝐴) ∈ 𝑆) |
4 | ndmovordi.2 | . . . . 5 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
5 | ndmovordi.5 | . . . . 5 ⊢ ¬ ∅ ∈ 𝑆 | |
6 | 4, 5 | ndmovrcl 7636 | . . . 4 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
7 | 6 | simpld 494 | . . 3 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → 𝐶 ∈ 𝑆) |
8 | 3, 7 | syl 17 | . 2 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐶 ∈ 𝑆) |
9 | ndmovordi.6 | . . 3 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | |
10 | 9 | biimprd 248 | . 2 ⊢ (𝐶 ∈ 𝑆 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)) |
11 | 8, 10 | mpcom 38 | 1 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 × cxp 5698 dom cdm 5700 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: ltexprlem4 11108 ltsosr 11163 |
Copyright terms: Public domain | W3C validator |