MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovordi Structured version   Visualization version   GIF version

Theorem ndmovordi 7441
Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
ndmovordi.2 dom 𝐹 = (𝑆 × 𝑆)
ndmovordi.4 𝑅 ⊆ (𝑆 × 𝑆)
ndmovordi.5 ¬ ∅ ∈ 𝑆
ndmovordi.6 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Assertion
Ref Expression
ndmovordi ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)

Proof of Theorem ndmovordi
StepHypRef Expression
1 ndmovordi.4 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 5643 . . . 4 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆))
32simpld 494 . . 3 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐶𝐹𝐴) ∈ 𝑆)
4 ndmovordi.2 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
5 ndmovordi.5 . . . . 5 ¬ ∅ ∈ 𝑆
64, 5ndmovrcl 7436 . . . 4 ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶𝑆𝐴𝑆))
76simpld 494 . . 3 ((𝐶𝐹𝐴) ∈ 𝑆𝐶𝑆)
83, 7syl 17 . 2 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐶𝑆)
9 ndmovordi.6 . . 3 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
109biimprd 247 . 2 (𝐶𝑆 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵))
118, 10mpcom 38 1 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2108  wss 3883  c0 4253   class class class wbr 5070   × cxp 5578  dom cdm 5580  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  ltexprlem4  10726  ltsosr  10781
  Copyright terms: Public domain W3C validator