MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovordi Structured version   Visualization version   GIF version

Theorem ndmovordi 7603
Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
ndmovordi.2 dom 𝐹 = (𝑆 × 𝑆)
ndmovordi.4 𝑅 ⊆ (𝑆 × 𝑆)
ndmovordi.5 ¬ ∅ ∈ 𝑆
ndmovordi.6 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Assertion
Ref Expression
ndmovordi ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)

Proof of Theorem ndmovordi
StepHypRef Expression
1 ndmovordi.4 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 5724 . . . 4 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆))
32simpld 494 . . 3 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐶𝐹𝐴) ∈ 𝑆)
4 ndmovordi.2 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
5 ndmovordi.5 . . . . 5 ¬ ∅ ∈ 𝑆
64, 5ndmovrcl 7598 . . . 4 ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶𝑆𝐴𝑆))
76simpld 494 . . 3 ((𝐶𝐹𝐴) ∈ 𝑆𝐶𝑆)
83, 7syl 17 . 2 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐶𝑆)
9 ndmovordi.6 . . 3 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
109biimprd 248 . 2 (𝐶𝑆 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵))
118, 10mpcom 38 1 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wss 3931  c0 4313   class class class wbr 5124   × cxp 5657  dom cdm 5659  (class class class)co 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-dm 5669  df-iota 6489  df-fv 6544  df-ov 7413
This theorem is referenced by:  ltexprlem4  11058  ltsosr  11113
  Copyright terms: Public domain W3C validator