MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovordi Structured version   Visualization version   GIF version

Theorem ndmovordi 7624
Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
ndmovordi.2 dom 𝐹 = (𝑆 × 𝑆)
ndmovordi.4 𝑅 ⊆ (𝑆 × 𝑆)
ndmovordi.5 ¬ ∅ ∈ 𝑆
ndmovordi.6 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Assertion
Ref Expression
ndmovordi ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)

Proof of Theorem ndmovordi
StepHypRef Expression
1 ndmovordi.4 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 5754 . . . 4 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆))
32simpld 494 . . 3 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐶𝐹𝐴) ∈ 𝑆)
4 ndmovordi.2 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
5 ndmovordi.5 . . . . 5 ¬ ∅ ∈ 𝑆
64, 5ndmovrcl 7619 . . . 4 ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶𝑆𝐴𝑆))
76simpld 494 . . 3 ((𝐶𝐹𝐴) ∈ 𝑆𝐶𝑆)
83, 7syl 17 . 2 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐶𝑆)
9 ndmovordi.6 . . 3 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
109biimprd 248 . 2 (𝐶𝑆 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵))
118, 10mpcom 38 1 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2106  wss 3963  c0 4339   class class class wbr 5148   × cxp 5687  dom cdm 5689  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-dm 5699  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  ltexprlem4  11077  ltsosr  11132
  Copyright terms: Public domain W3C validator