MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovordi Structured version   Visualization version   GIF version

Theorem ndmovordi 7641
Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998.)
Hypotheses
Ref Expression
ndmovordi.2 dom 𝐹 = (𝑆 × 𝑆)
ndmovordi.4 𝑅 ⊆ (𝑆 × 𝑆)
ndmovordi.5 ¬ ∅ ∈ 𝑆
ndmovordi.6 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Assertion
Ref Expression
ndmovordi ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)

Proof of Theorem ndmovordi
StepHypRef Expression
1 ndmovordi.4 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 5765 . . . 4 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆))
32simpld 494 . . 3 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐶𝐹𝐴) ∈ 𝑆)
4 ndmovordi.2 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
5 ndmovordi.5 . . . . 5 ¬ ∅ ∈ 𝑆
64, 5ndmovrcl 7636 . . . 4 ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶𝑆𝐴𝑆))
76simpld 494 . . 3 ((𝐶𝐹𝐴) ∈ 𝑆𝐶𝑆)
83, 7syl 17 . 2 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐶𝑆)
9 ndmovordi.6 . . 3 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
109biimprd 248 . 2 (𝐶𝑆 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵))
118, 10mpcom 38 1 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  wss 3976  c0 4352   class class class wbr 5166   × cxp 5698  dom cdm 5700  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  ltexprlem4  11108  ltsosr  11163
  Copyright terms: Public domain W3C validator