| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovordi | Structured version Visualization version GIF version | ||
| Description: Elimination of redundant antecedent in an ordering law. (Contributed by NM, 25-Jun-1998.) |
| Ref | Expression |
|---|---|
| ndmovordi.2 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| ndmovordi.4 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
| ndmovordi.5 | ⊢ ¬ ∅ ∈ 𝑆 |
| ndmovordi.6 | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| Ref | Expression |
|---|---|
| ndmovordi | ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmovordi.4 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
| 2 | 1 | brel 5679 | . . . 4 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → ((𝐶𝐹𝐴) ∈ 𝑆 ∧ (𝐶𝐹𝐵) ∈ 𝑆)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → (𝐶𝐹𝐴) ∈ 𝑆) |
| 4 | ndmovordi.2 | . . . . 5 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 5 | ndmovordi.5 | . . . . 5 ⊢ ¬ ∅ ∈ 𝑆 | |
| 6 | 4, 5 | ndmovrcl 7532 | . . . 4 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → (𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
| 7 | 6 | simpld 494 | . . 3 ⊢ ((𝐶𝐹𝐴) ∈ 𝑆 → 𝐶 ∈ 𝑆) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐶 ∈ 𝑆) |
| 9 | ndmovordi.6 | . . 3 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) | |
| 10 | 9 | biimprd 248 | . 2 ⊢ (𝐶 ∈ 𝑆 → ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵)) |
| 11 | 8, 10 | mpcom 38 | 1 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) → 𝐴𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 × cxp 5612 dom cdm 5614 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: ltexprlem4 10930 ltsosr 10985 |
| Copyright terms: Public domain | W3C validator |