![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5nprm | Structured version Visualization version GIF version |
Description: The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5nprm | ⊢ (FermatNo‘5) ∉ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 11669 | . . . . . . . . 9 ⊢ 6 ∈ ℕ0 | |
2 | 7nn0 11670 | . . . . . . . . 9 ⊢ 7 ∈ ℕ0 | |
3 | 1, 2 | deccl 11864 | . . . . . . . 8 ⊢ ;67 ∈ ℕ0 |
4 | 0nn0 11663 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
5 | 3, 4 | deccl 11864 | . . . . . . 7 ⊢ ;;670 ∈ ℕ0 |
6 | 5, 4 | deccl 11864 | . . . . . 6 ⊢ ;;;6700 ∈ ℕ0 |
7 | 4nn0 11667 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
8 | 6, 7 | deccl 11864 | . . . . 5 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 11664 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 11864 | . . . 4 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | 7nn 11475 | . . . 4 ⊢ 7 ∈ ℕ | |
12 | 10, 11 | decnncl 11870 | . . 3 ⊢ ;;;;;;6700417 ∈ ℕ |
13 | 1, 7 | deccl 11864 | . . . 4 ⊢ ;64 ∈ ℕ0 |
14 | 1nn 11391 | . . . 4 ⊢ 1 ∈ ℕ | |
15 | 13, 14 | decnncl 11870 | . . 3 ⊢ ;;641 ∈ ℕ |
16 | 8, 14 | decnncl 11870 | . . . 4 ⊢ ;;;;;670041 ∈ ℕ |
17 | 1lt10 11990 | . . . 4 ⊢ 1 < ;10 | |
18 | 16, 2, 9, 17 | declti 11888 | . . 3 ⊢ 1 < ;;;;;;6700417 |
19 | 4nn 11463 | . . . . 5 ⊢ 4 ∈ ℕ | |
20 | 1, 19 | decnncl 11870 | . . . 4 ⊢ ;64 ∈ ℕ |
21 | 20, 9, 9, 17 | declti 11888 | . . 3 ⊢ 1 < ;;641 |
22 | fmtno5fac 42525 | . . . 4 ⊢ (FermatNo‘5) = (;;;;;;6700417 · ;;641) | |
23 | 22 | eqcomi 2787 | . . 3 ⊢ (;;;;;;6700417 · ;;641) = (FermatNo‘5) |
24 | 12, 15, 18, 21, 23 | nprmi 15811 | . 2 ⊢ ¬ (FermatNo‘5) ∈ ℙ |
25 | 24 | nelir 3078 | 1 ⊢ (FermatNo‘5) ∉ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∉ wnel 3075 ‘cfv 6137 (class class class)co 6924 0cc0 10274 1c1 10275 · cmul 10279 4c4 11436 5c5 11437 6c6 11438 7c7 11439 ;cdc 11849 ℙcprime 15794 FermatNocfmtno 42470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-rp 12142 df-seq 13124 df-exp 13183 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-dvds 15392 df-prm 15795 df-fmtno 42471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |