| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5nprm | Structured version Visualization version GIF version | ||
| Description: The 5 th Fermat number is a not a prime. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5nprm | ⊢ (FermatNo‘5) ∉ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12463 | . . . . . . . . 9 ⊢ 6 ∈ ℕ0 | |
| 2 | 7nn0 12464 | . . . . . . . . 9 ⊢ 7 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12664 | . . . . . . . 8 ⊢ ;67 ∈ ℕ0 |
| 4 | 0nn0 12457 | . . . . . . . 8 ⊢ 0 ∈ ℕ0 | |
| 5 | 3, 4 | deccl 12664 | . . . . . . 7 ⊢ ;;670 ∈ ℕ0 |
| 6 | 5, 4 | deccl 12664 | . . . . . 6 ⊢ ;;;6700 ∈ ℕ0 |
| 7 | 4nn0 12461 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 8 | 6, 7 | deccl 12664 | . . . . 5 ⊢ ;;;;67004 ∈ ℕ0 |
| 9 | 1nn0 12458 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12664 | . . . 4 ⊢ ;;;;;670041 ∈ ℕ0 |
| 11 | 7nn 12278 | . . . 4 ⊢ 7 ∈ ℕ | |
| 12 | 10, 11 | decnncl 12669 | . . 3 ⊢ ;;;;;;6700417 ∈ ℕ |
| 13 | 1, 7 | deccl 12664 | . . . 4 ⊢ ;64 ∈ ℕ0 |
| 14 | 1nn 12197 | . . . 4 ⊢ 1 ∈ ℕ | |
| 15 | 13, 14 | decnncl 12669 | . . 3 ⊢ ;;641 ∈ ℕ |
| 16 | 8, 14 | decnncl 12669 | . . . 4 ⊢ ;;;;;670041 ∈ ℕ |
| 17 | 1lt10 12788 | . . . 4 ⊢ 1 < ;10 | |
| 18 | 16, 2, 9, 17 | declti 12687 | . . 3 ⊢ 1 < ;;;;;;6700417 |
| 19 | 4nn 12269 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 20 | 1, 19 | decnncl 12669 | . . . 4 ⊢ ;64 ∈ ℕ |
| 21 | 20, 9, 9, 17 | declti 12687 | . . 3 ⊢ 1 < ;;641 |
| 22 | fmtno5fac 47583 | . . . 4 ⊢ (FermatNo‘5) = (;;;;;;6700417 · ;;641) | |
| 23 | 22 | eqcomi 2738 | . . 3 ⊢ (;;;;;;6700417 · ;;641) = (FermatNo‘5) |
| 24 | 12, 15, 18, 21, 23 | nprmi 16659 | . 2 ⊢ ¬ (FermatNo‘5) ∈ ℙ |
| 25 | 24 | nelir 3032 | 1 ⊢ (FermatNo‘5) ∉ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ∉ wnel 3029 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 · cmul 11073 4c4 12243 5c5 12244 6c6 12245 7c7 12246 ;cdc 12649 ℙcprime 16641 FermatNocfmtno 47528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-prm 16642 df-fmtno 47529 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |