Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1neven | Structured version Visualization version GIF version |
Description: 1 is not an even integer. (Contributed by AV, 12-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
Ref | Expression |
---|---|
1neven | ⊢ 1 ∉ 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnz 12426 | . . . . . . 7 ⊢ ¬ (1 / 2) ∈ ℤ | |
2 | eleq1a 2829 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 → (1 / 2) ∈ ℤ)) | |
3 | 1, 2 | mtoi 198 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥) |
4 | 1cnd 10998 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 1 ∈ ℂ) | |
5 | zcn 12352 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
6 | 2cnne0 12211 | . . . . . . . 8 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
8 | divmul2 11665 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥))) | |
9 | 4, 5, 7, 8 | syl3anc 1369 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥))) |
10 | 3, 9 | mtbid 323 | . . . . 5 ⊢ (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥)) |
11 | 10 | nrex 3072 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥) |
12 | 11 | intnan 486 | . . 3 ⊢ ¬ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥)) |
13 | eqeq1 2737 | . . . . 5 ⊢ (𝑧 = 1 → (𝑧 = (2 · 𝑥) ↔ 1 = (2 · 𝑥))) | |
14 | 13 | rexbidv 3169 | . . . 4 ⊢ (𝑧 = 1 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥))) |
15 | 2zrng.e | . . . 4 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
16 | 14, 15 | elrab2 3629 | . . 3 ⊢ (1 ∈ 𝐸 ↔ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥))) |
17 | 12, 16 | mtbir 322 | . 2 ⊢ ¬ 1 ∈ 𝐸 |
18 | 17 | nelir 3047 | 1 ⊢ 1 ∉ 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∉ wnel 3044 ∃wrex 3068 {crab 3221 (class class class)co 7295 ℂcc 10897 0cc0 10899 1c1 10900 · cmul 10904 / cdiv 11660 2c2 12056 ℤcz 12347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 |
This theorem is referenced by: 2zrngnmlid 45547 2zrngnmrid 45548 |
Copyright terms: Public domain | W3C validator |