Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1neven Structured version   Visualization version   GIF version

Theorem 1neven 44196
Description: 1 is not an even integer. (Contributed by AV, 12-Feb-2020.)
Hypothesis
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
Assertion
Ref Expression
1neven 1 ∉ 𝐸
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐸(𝑥,𝑧)

Proof of Theorem 1neven
StepHypRef Expression
1 halfnz 12054 . . . . . . 7 ¬ (1 / 2) ∈ ℤ
2 eleq1a 2908 . . . . . . 7 (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 → (1 / 2) ∈ ℤ))
31, 2mtoi 201 . . . . . 6 (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥)
4 1cnd 10630 . . . . . . 7 (𝑥 ∈ ℤ → 1 ∈ ℂ)
5 zcn 11980 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6 2cnne0 11841 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
76a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
8 divmul2 11296 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥)))
94, 5, 7, 8syl3anc 1367 . . . . . 6 (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥)))
103, 9mtbid 326 . . . . 5 (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥))
1110nrex 3269 . . . 4 ¬ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥)
1211intnan 489 . . 3 ¬ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥))
13 eqeq1 2825 . . . . 5 (𝑧 = 1 → (𝑧 = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
1413rexbidv 3297 . . . 4 (𝑧 = 1 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥)))
15 2zrng.e . . . 4 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
1614, 15elrab2 3683 . . 3 (1 ∈ 𝐸 ↔ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥)))
1712, 16mtbir 325 . 2 ¬ 1 ∈ 𝐸
1817nelir 3126 1 1 ∉ 𝐸
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wnel 3123  wrex 3139  {crab 3142  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   · cmul 10536   / cdiv 11291  2c2 11686  cz 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976
This theorem is referenced by:  2zrngnmlid  44213  2zrngnmrid  44214
  Copyright terms: Public domain W3C validator