Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nodd Structured version   Visualization version   GIF version

Theorem 0nodd 46224
Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
0nodd 0 ∉ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 0nodd
StepHypRef Expression
1 halfnz 12590 . . . . . . . . . . 11 ¬ (1 / 2) ∈ ℤ
2 eleq1 2820 . . . . . . . . . . 11 ((1 / 2) = -𝑥 → ((1 / 2) ∈ ℤ ↔ -𝑥 ∈ ℤ))
31, 2mtbii 325 . . . . . . . . . 10 ((1 / 2) = -𝑥 → ¬ -𝑥 ∈ ℤ)
4 znegcl 12547 . . . . . . . . . 10 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
53, 4nsyl3 138 . . . . . . . . 9 (𝑥 ∈ ℤ → ¬ (1 / 2) = -𝑥)
6 eqcom 2738 . . . . . . . . 9 (-𝑥 = (1 / 2) ↔ (1 / 2) = -𝑥)
75, 6sylnibr 328 . . . . . . . 8 (𝑥 ∈ ℤ → ¬ -𝑥 = (1 / 2))
8 ax-1cn 11118 . . . . . . . . . . . 12 1 ∈ ℂ
9 2cn 12237 . . . . . . . . . . . 12 2 ∈ ℂ
10 2ne0 12266 . . . . . . . . . . . 12 2 ≠ 0
11 divneg 11856 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
1211eqcomd 2737 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-1 / 2) = -(1 / 2))
138, 9, 10, 12mp3an 1461 . . . . . . . . . . 11 (-1 / 2) = -(1 / 2)
1413a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (-1 / 2) = -(1 / 2))
1514eqeq1d 2733 . . . . . . . . 9 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -(1 / 2) = 𝑥))
16 halfcn 12377 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
1716a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
18 zcn 12513 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1917, 18negcon1d 11515 . . . . . . . . 9 (𝑥 ∈ ℤ → (-(1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
2015, 19bitrd 278 . . . . . . . 8 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
217, 20mtbird 324 . . . . . . 7 (𝑥 ∈ ℤ → ¬ (-1 / 2) = 𝑥)
22 neg1cn 12276 . . . . . . . . 9 -1 ∈ ℂ
2322a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → -1 ∈ ℂ)
24 2cnd 12240 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ∈ ℂ)
2510a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ≠ 0)
2623, 18, 24, 25divmul2d 11973 . . . . . . 7 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -1 = (2 · 𝑥)))
2721, 26mtbid 323 . . . . . 6 (𝑥 ∈ ℤ → ¬ -1 = (2 · 𝑥))
28 eqcom 2738 . . . . . . . 8 (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0)
2928a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0))
30 0cnd 11157 . . . . . . . 8 (𝑥 ∈ ℤ → 0 ∈ ℂ)
31 1cnd 11159 . . . . . . . 8 (𝑥 ∈ ℤ → 1 ∈ ℂ)
3224, 18mulcld 11184 . . . . . . . 8 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
33 subadd2 11414 . . . . . . . . 9 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((0 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 0))
3433bicomd 222 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
3530, 31, 32, 34syl3anc 1371 . . . . . . 7 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
36 df-neg 11397 . . . . . . . . . 10 -1 = (0 − 1)
3736eqcomi 2740 . . . . . . . . 9 (0 − 1) = -1
3837a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → (0 − 1) = -1)
3938eqeq1d 2733 . . . . . . 7 (𝑥 ∈ ℤ → ((0 − 1) = (2 · 𝑥) ↔ -1 = (2 · 𝑥)))
4029, 35, 393bitrd 304 . . . . . 6 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ -1 = (2 · 𝑥)))
4127, 40mtbird 324 . . . . 5 (𝑥 ∈ ℤ → ¬ 0 = ((2 · 𝑥) + 1))
4241nrex 3073 . . . 4 ¬ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)
4342intnan 487 . . 3 ¬ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1))
44 eqeq1 2735 . . . . 5 (𝑧 = 0 → (𝑧 = ((2 · 𝑥) + 1) ↔ 0 = ((2 · 𝑥) + 1)))
4544rexbidv 3171 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
46 oddinmgm.e . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
4745, 46elrab2 3651 . . 3 (0 ∈ 𝑂 ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
4843, 47mtbir 322 . 2 ¬ 0 ∈ 𝑂
4948nelir 3048 1 0 ∉ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wnel 3045  wrex 3069  {crab 3405  (class class class)co 7362  cc 11058  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065  cmin 11394  -cneg 11395   / cdiv 11821  2c2 12217  cz 12508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-n0 12423  df-z 12509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator