Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nodd Structured version   Visualization version   GIF version

Theorem 0nodd 45364
Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
0nodd 0 ∉ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 0nodd
StepHypRef Expression
1 halfnz 12398 . . . . . . . . . . 11 ¬ (1 / 2) ∈ ℤ
2 eleq1 2826 . . . . . . . . . . 11 ((1 / 2) = -𝑥 → ((1 / 2) ∈ ℤ ↔ -𝑥 ∈ ℤ))
31, 2mtbii 326 . . . . . . . . . 10 ((1 / 2) = -𝑥 → ¬ -𝑥 ∈ ℤ)
4 znegcl 12355 . . . . . . . . . 10 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
53, 4nsyl3 138 . . . . . . . . 9 (𝑥 ∈ ℤ → ¬ (1 / 2) = -𝑥)
6 eqcom 2745 . . . . . . . . 9 (-𝑥 = (1 / 2) ↔ (1 / 2) = -𝑥)
75, 6sylnibr 329 . . . . . . . 8 (𝑥 ∈ ℤ → ¬ -𝑥 = (1 / 2))
8 ax-1cn 10929 . . . . . . . . . . . 12 1 ∈ ℂ
9 2cn 12048 . . . . . . . . . . . 12 2 ∈ ℂ
10 2ne0 12077 . . . . . . . . . . . 12 2 ≠ 0
11 divneg 11667 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
1211eqcomd 2744 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-1 / 2) = -(1 / 2))
138, 9, 10, 12mp3an 1460 . . . . . . . . . . 11 (-1 / 2) = -(1 / 2)
1413a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (-1 / 2) = -(1 / 2))
1514eqeq1d 2740 . . . . . . . . 9 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -(1 / 2) = 𝑥))
16 halfcn 12188 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
1716a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
18 zcn 12324 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1917, 18negcon1d 11326 . . . . . . . . 9 (𝑥 ∈ ℤ → (-(1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
2015, 19bitrd 278 . . . . . . . 8 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
217, 20mtbird 325 . . . . . . 7 (𝑥 ∈ ℤ → ¬ (-1 / 2) = 𝑥)
22 neg1cn 12087 . . . . . . . . 9 -1 ∈ ℂ
2322a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → -1 ∈ ℂ)
24 2cnd 12051 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ∈ ℂ)
2510a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ≠ 0)
2623, 18, 24, 25divmul2d 11784 . . . . . . 7 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -1 = (2 · 𝑥)))
2721, 26mtbid 324 . . . . . 6 (𝑥 ∈ ℤ → ¬ -1 = (2 · 𝑥))
28 eqcom 2745 . . . . . . . 8 (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0)
2928a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0))
30 0cnd 10968 . . . . . . . 8 (𝑥 ∈ ℤ → 0 ∈ ℂ)
31 1cnd 10970 . . . . . . . 8 (𝑥 ∈ ℤ → 1 ∈ ℂ)
3224, 18mulcld 10995 . . . . . . . 8 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
33 subadd2 11225 . . . . . . . . 9 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((0 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 0))
3433bicomd 222 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
3530, 31, 32, 34syl3anc 1370 . . . . . . 7 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
36 df-neg 11208 . . . . . . . . . 10 -1 = (0 − 1)
3736eqcomi 2747 . . . . . . . . 9 (0 − 1) = -1
3837a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → (0 − 1) = -1)
3938eqeq1d 2740 . . . . . . 7 (𝑥 ∈ ℤ → ((0 − 1) = (2 · 𝑥) ↔ -1 = (2 · 𝑥)))
4029, 35, 393bitrd 305 . . . . . 6 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ -1 = (2 · 𝑥)))
4127, 40mtbird 325 . . . . 5 (𝑥 ∈ ℤ → ¬ 0 = ((2 · 𝑥) + 1))
4241nrex 3197 . . . 4 ¬ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)
4342intnan 487 . . 3 ¬ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1))
44 eqeq1 2742 . . . . 5 (𝑧 = 0 → (𝑧 = ((2 · 𝑥) + 1) ↔ 0 = ((2 · 𝑥) + 1)))
4544rexbidv 3226 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
46 oddinmgm.e . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
4745, 46elrab2 3627 . . 3 (0 ∈ 𝑂 ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
4843, 47mtbir 323 . 2 ¬ 0 ∈ 𝑂
4948nelir 3052 1 0 ∉ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wnel 3049  wrex 3065  {crab 3068  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  cz 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator