Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nodd Structured version   Visualization version   GIF version

Theorem 0nodd 44417
Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
0nodd 0 ∉ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 0nodd
StepHypRef Expression
1 halfnz 12052 . . . . . . . . . . 11 ¬ (1 / 2) ∈ ℤ
2 eleq1 2880 . . . . . . . . . . 11 ((1 / 2) = -𝑥 → ((1 / 2) ∈ ℤ ↔ -𝑥 ∈ ℤ))
31, 2mtbii 329 . . . . . . . . . 10 ((1 / 2) = -𝑥 → ¬ -𝑥 ∈ ℤ)
4 znegcl 12009 . . . . . . . . . 10 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
53, 4nsyl3 140 . . . . . . . . 9 (𝑥 ∈ ℤ → ¬ (1 / 2) = -𝑥)
6 eqcom 2808 . . . . . . . . 9 (-𝑥 = (1 / 2) ↔ (1 / 2) = -𝑥)
75, 6sylnibr 332 . . . . . . . 8 (𝑥 ∈ ℤ → ¬ -𝑥 = (1 / 2))
8 ax-1cn 10588 . . . . . . . . . . . 12 1 ∈ ℂ
9 2cn 11704 . . . . . . . . . . . 12 2 ∈ ℂ
10 2ne0 11733 . . . . . . . . . . . 12 2 ≠ 0
11 divneg 11325 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
1211eqcomd 2807 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-1 / 2) = -(1 / 2))
138, 9, 10, 12mp3an 1458 . . . . . . . . . . 11 (-1 / 2) = -(1 / 2)
1413a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (-1 / 2) = -(1 / 2))
1514eqeq1d 2803 . . . . . . . . 9 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -(1 / 2) = 𝑥))
16 halfcn 11844 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
1716a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
18 zcn 11978 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1917, 18negcon1d 10984 . . . . . . . . 9 (𝑥 ∈ ℤ → (-(1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
2015, 19bitrd 282 . . . . . . . 8 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
217, 20mtbird 328 . . . . . . 7 (𝑥 ∈ ℤ → ¬ (-1 / 2) = 𝑥)
22 neg1cn 11743 . . . . . . . . 9 -1 ∈ ℂ
2322a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → -1 ∈ ℂ)
24 2cnd 11707 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ∈ ℂ)
2510a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ≠ 0)
2623, 18, 24, 25divmul2d 11442 . . . . . . 7 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -1 = (2 · 𝑥)))
2721, 26mtbid 327 . . . . . 6 (𝑥 ∈ ℤ → ¬ -1 = (2 · 𝑥))
28 eqcom 2808 . . . . . . . 8 (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0)
2928a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0))
30 0cnd 10627 . . . . . . . 8 (𝑥 ∈ ℤ → 0 ∈ ℂ)
31 1cnd 10629 . . . . . . . 8 (𝑥 ∈ ℤ → 1 ∈ ℂ)
3224, 18mulcld 10654 . . . . . . . 8 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
33 subadd2 10883 . . . . . . . . 9 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((0 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 0))
3433bicomd 226 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
3530, 31, 32, 34syl3anc 1368 . . . . . . 7 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
36 df-neg 10866 . . . . . . . . . 10 -1 = (0 − 1)
3736eqcomi 2810 . . . . . . . . 9 (0 − 1) = -1
3837a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → (0 − 1) = -1)
3938eqeq1d 2803 . . . . . . 7 (𝑥 ∈ ℤ → ((0 − 1) = (2 · 𝑥) ↔ -1 = (2 · 𝑥)))
4029, 35, 393bitrd 308 . . . . . 6 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ -1 = (2 · 𝑥)))
4127, 40mtbird 328 . . . . 5 (𝑥 ∈ ℤ → ¬ 0 = ((2 · 𝑥) + 1))
4241nrex 3231 . . . 4 ¬ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)
4342intnan 490 . . 3 ¬ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1))
44 eqeq1 2805 . . . . 5 (𝑧 = 0 → (𝑧 = ((2 · 𝑥) + 1) ↔ 0 = ((2 · 𝑥) + 1)))
4544rexbidv 3259 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
46 oddinmgm.e . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
4745, 46elrab2 3634 . . 3 (0 ∈ 𝑂 ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
4843, 47mtbir 326 . 2 ¬ 0 ∈ 𝑂
4948nelir 3097 1 0 ∉ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wnel 3094  wrex 3110  {crab 3113  (class class class)co 7139  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863  -cneg 10864   / cdiv 11290  2c2 11684  cz 11973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator