Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nodd Structured version   Visualization version   GIF version

Theorem 0nodd 47893
Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
0nodd 0 ∉ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 0nodd
StepHypRef Expression
1 halfnz 12721 . . . . . . . . . . 11 ¬ (1 / 2) ∈ ℤ
2 eleq1 2832 . . . . . . . . . . 11 ((1 / 2) = -𝑥 → ((1 / 2) ∈ ℤ ↔ -𝑥 ∈ ℤ))
31, 2mtbii 326 . . . . . . . . . 10 ((1 / 2) = -𝑥 → ¬ -𝑥 ∈ ℤ)
4 znegcl 12678 . . . . . . . . . 10 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
53, 4nsyl3 138 . . . . . . . . 9 (𝑥 ∈ ℤ → ¬ (1 / 2) = -𝑥)
6 eqcom 2747 . . . . . . . . 9 (-𝑥 = (1 / 2) ↔ (1 / 2) = -𝑥)
75, 6sylnibr 329 . . . . . . . 8 (𝑥 ∈ ℤ → ¬ -𝑥 = (1 / 2))
8 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
9 2cn 12368 . . . . . . . . . . . 12 2 ∈ ℂ
10 2ne0 12397 . . . . . . . . . . . 12 2 ≠ 0
11 divneg 11986 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
1211eqcomd 2746 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-1 / 2) = -(1 / 2))
138, 9, 10, 12mp3an 1461 . . . . . . . . . . 11 (-1 / 2) = -(1 / 2)
1413a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (-1 / 2) = -(1 / 2))
1514eqeq1d 2742 . . . . . . . . 9 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -(1 / 2) = 𝑥))
16 halfcn 12508 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
1716a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
18 zcn 12644 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1917, 18negcon1d 11641 . . . . . . . . 9 (𝑥 ∈ ℤ → (-(1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
2015, 19bitrd 279 . . . . . . . 8 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
217, 20mtbird 325 . . . . . . 7 (𝑥 ∈ ℤ → ¬ (-1 / 2) = 𝑥)
22 neg1cn 12407 . . . . . . . . 9 -1 ∈ ℂ
2322a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → -1 ∈ ℂ)
24 2cnd 12371 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ∈ ℂ)
2510a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ≠ 0)
2623, 18, 24, 25divmul2d 12103 . . . . . . 7 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -1 = (2 · 𝑥)))
2721, 26mtbid 324 . . . . . 6 (𝑥 ∈ ℤ → ¬ -1 = (2 · 𝑥))
28 eqcom 2747 . . . . . . . 8 (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0)
2928a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0))
30 0cnd 11283 . . . . . . . 8 (𝑥 ∈ ℤ → 0 ∈ ℂ)
31 1cnd 11285 . . . . . . . 8 (𝑥 ∈ ℤ → 1 ∈ ℂ)
3224, 18mulcld 11310 . . . . . . . 8 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
33 subadd2 11540 . . . . . . . . 9 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((0 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 0))
3433bicomd 223 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
3530, 31, 32, 34syl3anc 1371 . . . . . . 7 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
36 df-neg 11523 . . . . . . . . . 10 -1 = (0 − 1)
3736eqcomi 2749 . . . . . . . . 9 (0 − 1) = -1
3837a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → (0 − 1) = -1)
3938eqeq1d 2742 . . . . . . 7 (𝑥 ∈ ℤ → ((0 − 1) = (2 · 𝑥) ↔ -1 = (2 · 𝑥)))
4029, 35, 393bitrd 305 . . . . . 6 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ -1 = (2 · 𝑥)))
4127, 40mtbird 325 . . . . 5 (𝑥 ∈ ℤ → ¬ 0 = ((2 · 𝑥) + 1))
4241nrex 3080 . . . 4 ¬ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)
4342intnan 486 . . 3 ¬ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1))
44 eqeq1 2744 . . . . 5 (𝑧 = 0 → (𝑧 = ((2 · 𝑥) + 1) ↔ 0 = ((2 · 𝑥) + 1)))
4544rexbidv 3185 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
46 oddinmgm.e . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
4745, 46elrab2 3711 . . 3 (0 ∈ 𝑂 ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
4843, 47mtbir 323 . 2 ¬ 0 ∈ 𝑂
4948nelir 3055 1 0 ∉ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wnel 3052  wrex 3076  {crab 3443  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator