Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0nodd Structured version   Visualization version   GIF version

Theorem 0nodd 48158
Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
0nodd 0 ∉ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 0nodd
StepHypRef Expression
1 halfnz 12572 . . . . . . . . . . 11 ¬ (1 / 2) ∈ ℤ
2 eleq1 2816 . . . . . . . . . . 11 ((1 / 2) = -𝑥 → ((1 / 2) ∈ ℤ ↔ -𝑥 ∈ ℤ))
31, 2mtbii 326 . . . . . . . . . 10 ((1 / 2) = -𝑥 → ¬ -𝑥 ∈ ℤ)
4 znegcl 12528 . . . . . . . . . 10 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
53, 4nsyl3 138 . . . . . . . . 9 (𝑥 ∈ ℤ → ¬ (1 / 2) = -𝑥)
6 eqcom 2736 . . . . . . . . 9 (-𝑥 = (1 / 2) ↔ (1 / 2) = -𝑥)
75, 6sylnibr 329 . . . . . . . 8 (𝑥 ∈ ℤ → ¬ -𝑥 = (1 / 2))
8 ax-1cn 11086 . . . . . . . . . . . 12 1 ∈ ℂ
9 2cn 12221 . . . . . . . . . . . 12 2 ∈ ℂ
10 2ne0 12250 . . . . . . . . . . . 12 2 ≠ 0
11 divneg 11834 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
1211eqcomd 2735 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (-1 / 2) = -(1 / 2))
138, 9, 10, 12mp3an 1463 . . . . . . . . . . 11 (-1 / 2) = -(1 / 2)
1413a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (-1 / 2) = -(1 / 2))
1514eqeq1d 2731 . . . . . . . . 9 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -(1 / 2) = 𝑥))
16 halfcn 12356 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
1716a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
18 zcn 12494 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1917, 18negcon1d 11487 . . . . . . . . 9 (𝑥 ∈ ℤ → (-(1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
2015, 19bitrd 279 . . . . . . . 8 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -𝑥 = (1 / 2)))
217, 20mtbird 325 . . . . . . 7 (𝑥 ∈ ℤ → ¬ (-1 / 2) = 𝑥)
22 neg1cn 12131 . . . . . . . . 9 -1 ∈ ℂ
2322a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → -1 ∈ ℂ)
24 2cnd 12224 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ∈ ℂ)
2510a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ≠ 0)
2623, 18, 24, 25divmul2d 11951 . . . . . . 7 (𝑥 ∈ ℤ → ((-1 / 2) = 𝑥 ↔ -1 = (2 · 𝑥)))
2721, 26mtbid 324 . . . . . 6 (𝑥 ∈ ℤ → ¬ -1 = (2 · 𝑥))
28 eqcom 2736 . . . . . . . 8 (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0)
2928a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 0))
30 0cnd 11127 . . . . . . . 8 (𝑥 ∈ ℤ → 0 ∈ ℂ)
31 1cnd 11129 . . . . . . . 8 (𝑥 ∈ ℤ → 1 ∈ ℂ)
3224, 18mulcld 11154 . . . . . . . 8 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
33 subadd2 11385 . . . . . . . . 9 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((0 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 0))
3433bicomd 223 . . . . . . . 8 ((0 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
3530, 31, 32, 34syl3anc 1373 . . . . . . 7 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 0 ↔ (0 − 1) = (2 · 𝑥)))
36 df-neg 11368 . . . . . . . . . 10 -1 = (0 − 1)
3736eqcomi 2738 . . . . . . . . 9 (0 − 1) = -1
3837a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → (0 − 1) = -1)
3938eqeq1d 2731 . . . . . . 7 (𝑥 ∈ ℤ → ((0 − 1) = (2 · 𝑥) ↔ -1 = (2 · 𝑥)))
4029, 35, 393bitrd 305 . . . . . 6 (𝑥 ∈ ℤ → (0 = ((2 · 𝑥) + 1) ↔ -1 = (2 · 𝑥)))
4127, 40mtbird 325 . . . . 5 (𝑥 ∈ ℤ → ¬ 0 = ((2 · 𝑥) + 1))
4241nrex 3057 . . . 4 ¬ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)
4342intnan 486 . . 3 ¬ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1))
44 eqeq1 2733 . . . . 5 (𝑧 = 0 → (𝑧 = ((2 · 𝑥) + 1) ↔ 0 = ((2 · 𝑥) + 1)))
4544rexbidv 3153 . . . 4 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
46 oddinmgm.e . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
4745, 46elrab2 3653 . . 3 (0 ∈ 𝑂 ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = ((2 · 𝑥) + 1)))
4843, 47mtbir 323 . 2 ¬ 0 ∈ 𝑂
4948nelir 3032 1 0 ∉ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wrex 3053  {crab 3396  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  cz 12489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator