| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoinf | Structured version Visualization version GIF version | ||
| Description: The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.) |
| Ref | Expression |
|---|---|
| fmtnoinf | ⊢ ran FermatNo ∉ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmtnof1 47516 | . . . 4 ⊢ FermatNo:ℕ0–1-1→ℕ | |
| 2 | f1f 6779 | . . . 4 ⊢ (FermatNo:ℕ0–1-1→ℕ → FermatNo:ℕ0⟶ℕ) | |
| 3 | fdm 6720 | . . . . . 6 ⊢ (FermatNo:ℕ0⟶ℕ → dom FermatNo = ℕ0) | |
| 4 | nnssnn0 12509 | . . . . . . . 8 ⊢ ℕ ⊆ ℕ0 | |
| 5 | nnnfi 13989 | . . . . . . . 8 ⊢ ¬ ℕ ∈ Fin | |
| 6 | ssfi 9192 | . . . . . . . . . 10 ⊢ ((ℕ0 ∈ Fin ∧ ℕ ⊆ ℕ0) → ℕ ∈ Fin) | |
| 7 | 6 | expcom 413 | . . . . . . . . 9 ⊢ (ℕ ⊆ ℕ0 → (ℕ0 ∈ Fin → ℕ ∈ Fin)) |
| 8 | 7 | con3d 152 | . . . . . . . 8 ⊢ (ℕ ⊆ ℕ0 → (¬ ℕ ∈ Fin → ¬ ℕ0 ∈ Fin)) |
| 9 | 4, 5, 8 | mp2 9 | . . . . . . 7 ⊢ ¬ ℕ0 ∈ Fin |
| 10 | eleq1 2823 | . . . . . . 7 ⊢ (dom FermatNo = ℕ0 → (dom FermatNo ∈ Fin ↔ ℕ0 ∈ Fin)) | |
| 11 | 9, 10 | mtbiri 327 | . . . . . 6 ⊢ (dom FermatNo = ℕ0 → ¬ dom FermatNo ∈ Fin) |
| 12 | 3, 11 | syl 17 | . . . . 5 ⊢ (FermatNo:ℕ0⟶ℕ → ¬ dom FermatNo ∈ Fin) |
| 13 | ffun 6714 | . . . . . 6 ⊢ (FermatNo:ℕ0⟶ℕ → Fun FermatNo) | |
| 14 | fundmfibi 9353 | . . . . . 6 ⊢ (Fun FermatNo → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin)) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (FermatNo:ℕ0⟶ℕ → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin)) |
| 16 | 12, 15 | mtbird 325 | . . . 4 ⊢ (FermatNo:ℕ0⟶ℕ → ¬ FermatNo ∈ Fin) |
| 17 | 1, 2, 16 | mp2b 10 | . . 3 ⊢ ¬ FermatNo ∈ Fin |
| 18 | nn0ex 12512 | . . . 4 ⊢ ℕ0 ∈ V | |
| 19 | f1dmvrnfibi 9358 | . . . . 5 ⊢ ((ℕ0 ∈ V ∧ FermatNo:ℕ0–1-1→ℕ) → (FermatNo ∈ Fin ↔ ran FermatNo ∈ Fin)) | |
| 20 | 19 | notbid 318 | . . . 4 ⊢ ((ℕ0 ∈ V ∧ FermatNo:ℕ0–1-1→ℕ) → (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin)) |
| 21 | 18, 1, 20 | mp2an 692 | . . 3 ⊢ (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin) |
| 22 | 17, 21 | mpbi 230 | . 2 ⊢ ¬ ran FermatNo ∈ Fin |
| 23 | 22 | nelir 3040 | 1 ⊢ ran FermatNo ∉ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3037 Vcvv 3464 ⊆ wss 3931 dom cdm 5659 ran crn 5660 Fun wfun 6530 ⟶wf 6532 –1-1→wf1 6533 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 FermatNocfmtno 47508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-fmtno 47509 |
| This theorem is referenced by: prminf2 47569 |
| Copyright terms: Public domain | W3C validator |