Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoinf Structured version   Visualization version   GIF version

Theorem fmtnoinf 47537
Description: The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnoinf ran FermatNo ∉ Fin

Proof of Theorem fmtnoinf
StepHypRef Expression
1 fmtnof1 47536 . . . 4 FermatNo:ℕ01-1→ℕ
2 f1f 6756 . . . 4 (FermatNo:ℕ01-1→ℕ → FermatNo:ℕ0⟶ℕ)
3 fdm 6697 . . . . . 6 (FermatNo:ℕ0⟶ℕ → dom FermatNo = ℕ0)
4 nnssnn0 12445 . . . . . . . 8 ℕ ⊆ ℕ0
5 nnnfi 13931 . . . . . . . 8 ¬ ℕ ∈ Fin
6 ssfi 9137 . . . . . . . . . 10 ((ℕ0 ∈ Fin ∧ ℕ ⊆ ℕ0) → ℕ ∈ Fin)
76expcom 413 . . . . . . . . 9 (ℕ ⊆ ℕ0 → (ℕ0 ∈ Fin → ℕ ∈ Fin))
87con3d 152 . . . . . . . 8 (ℕ ⊆ ℕ0 → (¬ ℕ ∈ Fin → ¬ ℕ0 ∈ Fin))
94, 5, 8mp2 9 . . . . . . 7 ¬ ℕ0 ∈ Fin
10 eleq1 2816 . . . . . . 7 (dom FermatNo = ℕ0 → (dom FermatNo ∈ Fin ↔ ℕ0 ∈ Fin))
119, 10mtbiri 327 . . . . . 6 (dom FermatNo = ℕ0 → ¬ dom FermatNo ∈ Fin)
123, 11syl 17 . . . . 5 (FermatNo:ℕ0⟶ℕ → ¬ dom FermatNo ∈ Fin)
13 ffun 6691 . . . . . 6 (FermatNo:ℕ0⟶ℕ → Fun FermatNo)
14 fundmfibi 9287 . . . . . 6 (Fun FermatNo → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin))
1513, 14syl 17 . . . . 5 (FermatNo:ℕ0⟶ℕ → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin))
1612, 15mtbird 325 . . . 4 (FermatNo:ℕ0⟶ℕ → ¬ FermatNo ∈ Fin)
171, 2, 16mp2b 10 . . 3 ¬ FermatNo ∈ Fin
18 nn0ex 12448 . . . 4 0 ∈ V
19 f1dmvrnfibi 9292 . . . . 5 ((ℕ0 ∈ V ∧ FermatNo:ℕ01-1→ℕ) → (FermatNo ∈ Fin ↔ ran FermatNo ∈ Fin))
2019notbid 318 . . . 4 ((ℕ0 ∈ V ∧ FermatNo:ℕ01-1→ℕ) → (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin))
2118, 1, 20mp2an 692 . . 3 (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin)
2217, 21mpbi 230 . 2 ¬ ran FermatNo ∈ Fin
2322nelir 3032 1 ran FermatNo ∉ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wnel 3029  Vcvv 3447  wss 3914  dom cdm 5638  ran crn 5639  Fun wfun 6505  wf 6507  1-1wf1 6508  Fincfn 8918  cn 12186  0cn0 12442  FermatNocfmtno 47528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-fmtno 47529
This theorem is referenced by:  prminf2  47589
  Copyright terms: Public domain W3C validator