| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoinf | Structured version Visualization version GIF version | ||
| Description: The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.) |
| Ref | Expression |
|---|---|
| fmtnoinf | ⊢ ran FermatNo ∉ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmtnof1 47540 | . . . 4 ⊢ FermatNo:ℕ0–1-1→ℕ | |
| 2 | f1f 6759 | . . . 4 ⊢ (FermatNo:ℕ0–1-1→ℕ → FermatNo:ℕ0⟶ℕ) | |
| 3 | fdm 6700 | . . . . . 6 ⊢ (FermatNo:ℕ0⟶ℕ → dom FermatNo = ℕ0) | |
| 4 | nnssnn0 12452 | . . . . . . . 8 ⊢ ℕ ⊆ ℕ0 | |
| 5 | nnnfi 13938 | . . . . . . . 8 ⊢ ¬ ℕ ∈ Fin | |
| 6 | ssfi 9143 | . . . . . . . . . 10 ⊢ ((ℕ0 ∈ Fin ∧ ℕ ⊆ ℕ0) → ℕ ∈ Fin) | |
| 7 | 6 | expcom 413 | . . . . . . . . 9 ⊢ (ℕ ⊆ ℕ0 → (ℕ0 ∈ Fin → ℕ ∈ Fin)) |
| 8 | 7 | con3d 152 | . . . . . . . 8 ⊢ (ℕ ⊆ ℕ0 → (¬ ℕ ∈ Fin → ¬ ℕ0 ∈ Fin)) |
| 9 | 4, 5, 8 | mp2 9 | . . . . . . 7 ⊢ ¬ ℕ0 ∈ Fin |
| 10 | eleq1 2817 | . . . . . . 7 ⊢ (dom FermatNo = ℕ0 → (dom FermatNo ∈ Fin ↔ ℕ0 ∈ Fin)) | |
| 11 | 9, 10 | mtbiri 327 | . . . . . 6 ⊢ (dom FermatNo = ℕ0 → ¬ dom FermatNo ∈ Fin) |
| 12 | 3, 11 | syl 17 | . . . . 5 ⊢ (FermatNo:ℕ0⟶ℕ → ¬ dom FermatNo ∈ Fin) |
| 13 | ffun 6694 | . . . . . 6 ⊢ (FermatNo:ℕ0⟶ℕ → Fun FermatNo) | |
| 14 | fundmfibi 9294 | . . . . . 6 ⊢ (Fun FermatNo → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin)) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (FermatNo:ℕ0⟶ℕ → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin)) |
| 16 | 12, 15 | mtbird 325 | . . . 4 ⊢ (FermatNo:ℕ0⟶ℕ → ¬ FermatNo ∈ Fin) |
| 17 | 1, 2, 16 | mp2b 10 | . . 3 ⊢ ¬ FermatNo ∈ Fin |
| 18 | nn0ex 12455 | . . . 4 ⊢ ℕ0 ∈ V | |
| 19 | f1dmvrnfibi 9299 | . . . . 5 ⊢ ((ℕ0 ∈ V ∧ FermatNo:ℕ0–1-1→ℕ) → (FermatNo ∈ Fin ↔ ran FermatNo ∈ Fin)) | |
| 20 | 19 | notbid 318 | . . . 4 ⊢ ((ℕ0 ∈ V ∧ FermatNo:ℕ0–1-1→ℕ) → (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin)) |
| 21 | 18, 1, 20 | mp2an 692 | . . 3 ⊢ (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin) |
| 22 | 17, 21 | mpbi 230 | . 2 ⊢ ¬ ran FermatNo ∈ Fin |
| 23 | 22 | nelir 3033 | 1 ⊢ ran FermatNo ∉ Fin |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 Vcvv 3450 ⊆ wss 3917 dom cdm 5641 ran crn 5642 Fun wfun 6508 ⟶wf 6510 –1-1→wf1 6511 Fincfn 8921 ℕcn 12193 ℕ0cn0 12449 FermatNocfmtno 47532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-fmtno 47533 |
| This theorem is referenced by: prminf2 47593 |
| Copyright terms: Public domain | W3C validator |