Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoinf Structured version   Visualization version   GIF version

Theorem fmtnoinf 45818
Description: The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnoinf ran FermatNo ∉ Fin

Proof of Theorem fmtnoinf
StepHypRef Expression
1 fmtnof1 45817 . . . 4 FermatNo:ℕ01-1→ℕ
2 f1f 6742 . . . 4 (FermatNo:ℕ01-1→ℕ → FermatNo:ℕ0⟶ℕ)
3 fdm 6681 . . . . . 6 (FermatNo:ℕ0⟶ℕ → dom FermatNo = ℕ0)
4 nnssnn0 12424 . . . . . . . 8 ℕ ⊆ ℕ0
5 nnnfi 13880 . . . . . . . 8 ¬ ℕ ∈ Fin
6 ssfi 9123 . . . . . . . . . 10 ((ℕ0 ∈ Fin ∧ ℕ ⊆ ℕ0) → ℕ ∈ Fin)
76expcom 415 . . . . . . . . 9 (ℕ ⊆ ℕ0 → (ℕ0 ∈ Fin → ℕ ∈ Fin))
87con3d 152 . . . . . . . 8 (ℕ ⊆ ℕ0 → (¬ ℕ ∈ Fin → ¬ ℕ0 ∈ Fin))
94, 5, 8mp2 9 . . . . . . 7 ¬ ℕ0 ∈ Fin
10 eleq1 2822 . . . . . . 7 (dom FermatNo = ℕ0 → (dom FermatNo ∈ Fin ↔ ℕ0 ∈ Fin))
119, 10mtbiri 327 . . . . . 6 (dom FermatNo = ℕ0 → ¬ dom FermatNo ∈ Fin)
123, 11syl 17 . . . . 5 (FermatNo:ℕ0⟶ℕ → ¬ dom FermatNo ∈ Fin)
13 ffun 6675 . . . . . 6 (FermatNo:ℕ0⟶ℕ → Fun FermatNo)
14 fundmfibi 9281 . . . . . 6 (Fun FermatNo → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin))
1513, 14syl 17 . . . . 5 (FermatNo:ℕ0⟶ℕ → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin))
1612, 15mtbird 325 . . . 4 (FermatNo:ℕ0⟶ℕ → ¬ FermatNo ∈ Fin)
171, 2, 16mp2b 10 . . 3 ¬ FermatNo ∈ Fin
18 nn0ex 12427 . . . 4 0 ∈ V
19 f1dmvrnfibi 9286 . . . . 5 ((ℕ0 ∈ V ∧ FermatNo:ℕ01-1→ℕ) → (FermatNo ∈ Fin ↔ ran FermatNo ∈ Fin))
2019notbid 318 . . . 4 ((ℕ0 ∈ V ∧ FermatNo:ℕ01-1→ℕ) → (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin))
2118, 1, 20mp2an 691 . . 3 (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin)
2217, 21mpbi 229 . 2 ¬ ran FermatNo ∈ Fin
2322nelir 3049 1 ran FermatNo ∉ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397   = wceq 1542  wcel 2107  wnel 3046  Vcvv 3447  wss 3914  dom cdm 5637  ran crn 5638  Fun wfun 6494  wf 6496  1-1wf1 6497  Fincfn 8889  cn 12161  0cn0 12421  FermatNocfmtno 45809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-n0 12422  df-z 12508  df-uz 12772  df-rp 12924  df-seq 13916  df-exp 13977  df-fmtno 45810
This theorem is referenced by:  prminf2  45870
  Copyright terms: Public domain W3C validator