Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoinf Structured version   Visualization version   GIF version

Theorem fmtnoinf 47660
Description: The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnoinf ran FermatNo ∉ Fin

Proof of Theorem fmtnoinf
StepHypRef Expression
1 fmtnof1 47659 . . . 4 FermatNo:ℕ01-1→ℕ
2 f1f 6724 . . . 4 (FermatNo:ℕ01-1→ℕ → FermatNo:ℕ0⟶ℕ)
3 fdm 6665 . . . . . 6 (FermatNo:ℕ0⟶ℕ → dom FermatNo = ℕ0)
4 nnssnn0 12391 . . . . . . . 8 ℕ ⊆ ℕ0
5 nnnfi 13875 . . . . . . . 8 ¬ ℕ ∈ Fin
6 ssfi 9089 . . . . . . . . . 10 ((ℕ0 ∈ Fin ∧ ℕ ⊆ ℕ0) → ℕ ∈ Fin)
76expcom 413 . . . . . . . . 9 (ℕ ⊆ ℕ0 → (ℕ0 ∈ Fin → ℕ ∈ Fin))
87con3d 152 . . . . . . . 8 (ℕ ⊆ ℕ0 → (¬ ℕ ∈ Fin → ¬ ℕ0 ∈ Fin))
94, 5, 8mp2 9 . . . . . . 7 ¬ ℕ0 ∈ Fin
10 eleq1 2821 . . . . . . 7 (dom FermatNo = ℕ0 → (dom FermatNo ∈ Fin ↔ ℕ0 ∈ Fin))
119, 10mtbiri 327 . . . . . 6 (dom FermatNo = ℕ0 → ¬ dom FermatNo ∈ Fin)
123, 11syl 17 . . . . 5 (FermatNo:ℕ0⟶ℕ → ¬ dom FermatNo ∈ Fin)
13 ffun 6659 . . . . . 6 (FermatNo:ℕ0⟶ℕ → Fun FermatNo)
14 fundmfibi 9227 . . . . . 6 (Fun FermatNo → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin))
1513, 14syl 17 . . . . 5 (FermatNo:ℕ0⟶ℕ → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin))
1612, 15mtbird 325 . . . 4 (FermatNo:ℕ0⟶ℕ → ¬ FermatNo ∈ Fin)
171, 2, 16mp2b 10 . . 3 ¬ FermatNo ∈ Fin
18 nn0ex 12394 . . . 4 0 ∈ V
19 f1dmvrnfibi 9232 . . . . 5 ((ℕ0 ∈ V ∧ FermatNo:ℕ01-1→ℕ) → (FermatNo ∈ Fin ↔ ran FermatNo ∈ Fin))
2019notbid 318 . . . 4 ((ℕ0 ∈ V ∧ FermatNo:ℕ01-1→ℕ) → (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin))
2118, 1, 20mp2an 692 . . 3 (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin)
2217, 21mpbi 230 . 2 ¬ ran FermatNo ∈ Fin
2322nelir 3036 1 ran FermatNo ∉ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2113  wnel 3033  Vcvv 3437  wss 3898  dom cdm 5619  ran crn 5620  Fun wfun 6480  wf 6482  1-1wf1 6483  Fincfn 8875  cn 12132  0cn0 12388  FermatNocfmtno 47651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-fmtno 47652
This theorem is referenced by:  prminf2  47712
  Copyright terms: Public domain W3C validator