Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoinf | Structured version Visualization version GIF version |
Description: The set of Fermat numbers is infinite. (Contributed by AV, 3-Aug-2021.) |
Ref | Expression |
---|---|
fmtnoinf | ⊢ ran FermatNo ∉ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtnof1 45027 | . . . 4 ⊢ FermatNo:ℕ0–1-1→ℕ | |
2 | f1f 6688 | . . . 4 ⊢ (FermatNo:ℕ0–1-1→ℕ → FermatNo:ℕ0⟶ℕ) | |
3 | fdm 6627 | . . . . . 6 ⊢ (FermatNo:ℕ0⟶ℕ → dom FermatNo = ℕ0) | |
4 | nnssnn0 12264 | . . . . . . . 8 ⊢ ℕ ⊆ ℕ0 | |
5 | nnnfi 13714 | . . . . . . . 8 ⊢ ¬ ℕ ∈ Fin | |
6 | ssfi 8981 | . . . . . . . . . 10 ⊢ ((ℕ0 ∈ Fin ∧ ℕ ⊆ ℕ0) → ℕ ∈ Fin) | |
7 | 6 | expcom 413 | . . . . . . . . 9 ⊢ (ℕ ⊆ ℕ0 → (ℕ0 ∈ Fin → ℕ ∈ Fin)) |
8 | 7 | con3d 152 | . . . . . . . 8 ⊢ (ℕ ⊆ ℕ0 → (¬ ℕ ∈ Fin → ¬ ℕ0 ∈ Fin)) |
9 | 4, 5, 8 | mp2 9 | . . . . . . 7 ⊢ ¬ ℕ0 ∈ Fin |
10 | eleq1 2821 | . . . . . . 7 ⊢ (dom FermatNo = ℕ0 → (dom FermatNo ∈ Fin ↔ ℕ0 ∈ Fin)) | |
11 | 9, 10 | mtbiri 326 | . . . . . 6 ⊢ (dom FermatNo = ℕ0 → ¬ dom FermatNo ∈ Fin) |
12 | 3, 11 | syl 17 | . . . . 5 ⊢ (FermatNo:ℕ0⟶ℕ → ¬ dom FermatNo ∈ Fin) |
13 | ffun 6621 | . . . . . 6 ⊢ (FermatNo:ℕ0⟶ℕ → Fun FermatNo) | |
14 | fundmfibi 9126 | . . . . . 6 ⊢ (Fun FermatNo → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (FermatNo:ℕ0⟶ℕ → (FermatNo ∈ Fin ↔ dom FermatNo ∈ Fin)) |
16 | 12, 15 | mtbird 324 | . . . 4 ⊢ (FermatNo:ℕ0⟶ℕ → ¬ FermatNo ∈ Fin) |
17 | 1, 2, 16 | mp2b 10 | . . 3 ⊢ ¬ FermatNo ∈ Fin |
18 | nn0ex 12267 | . . . 4 ⊢ ℕ0 ∈ V | |
19 | f1dmvrnfibi 9131 | . . . . 5 ⊢ ((ℕ0 ∈ V ∧ FermatNo:ℕ0–1-1→ℕ) → (FermatNo ∈ Fin ↔ ran FermatNo ∈ Fin)) | |
20 | 19 | notbid 317 | . . . 4 ⊢ ((ℕ0 ∈ V ∧ FermatNo:ℕ0–1-1→ℕ) → (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin)) |
21 | 18, 1, 20 | mp2an 688 | . . 3 ⊢ (¬ FermatNo ∈ Fin ↔ ¬ ran FermatNo ∈ Fin) |
22 | 17, 21 | mpbi 229 | . 2 ⊢ ¬ ran FermatNo ∈ Fin |
23 | 22 | nelir 3047 | 1 ⊢ ran FermatNo ∉ Fin |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∉ wnel 3044 Vcvv 3434 ⊆ wss 3889 dom cdm 5591 ran crn 5592 Fun wfun 6441 ⟶wf 6443 –1-1→wf1 6444 Fincfn 8753 ℕcn 12001 ℕ0cn0 12261 FermatNocfmtno 45019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-rp 12759 df-seq 13750 df-exp 13811 df-fmtno 45020 |
This theorem is referenced by: prminf2 45080 |
Copyright terms: Public domain | W3C validator |