![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmf0 | Structured version Visualization version GIF version |
Description: The least common multiple of the empty set is 1. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmf0 | ⊢ (lcm‘∅) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4357 | . . 3 ⊢ ∅ ⊆ ℤ | |
2 | 0fin 9118 | . . 3 ⊢ ∅ ∈ Fin | |
3 | noel 4291 | . . . 4 ⊢ ¬ 0 ∈ ∅ | |
4 | 3 | nelir 3049 | . . 3 ⊢ 0 ∉ ∅ |
5 | lcmfn0val 16504 | . . 3 ⊢ ((∅ ⊆ ℤ ∧ ∅ ∈ Fin ∧ 0 ∉ ∅) → (lcm‘∅) = inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛}, ℝ, < )) | |
6 | 1, 2, 4, 5 | mp3an 1462 | . 2 ⊢ (lcm‘∅) = inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛}, ℝ, < ) |
7 | ral0 4471 | . . . . . 6 ⊢ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛 | |
8 | 7 | rgenw 3065 | . . . . 5 ⊢ ∀𝑛 ∈ ℕ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛 |
9 | rabid2 3435 | . . . . 5 ⊢ (ℕ = {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛} ↔ ∀𝑛 ∈ ℕ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛) | |
10 | 8, 9 | mpbir 230 | . . . 4 ⊢ ℕ = {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛} |
11 | 10 | eqcomi 2742 | . . 3 ⊢ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛} = ℕ |
12 | 11 | infeq1i 9419 | . 2 ⊢ inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ ∅ 𝑚 ∥ 𝑛}, ℝ, < ) = inf(ℕ, ℝ, < ) |
13 | nninf 12859 | . 2 ⊢ inf(ℕ, ℝ, < ) = 1 | |
14 | 6, 12, 13 | 3eqtri 2765 | 1 ⊢ (lcm‘∅) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∉ wnel 3046 ∀wral 3061 {crab 3406 ⊆ wss 3911 ∅c0 4283 class class class wbr 5106 ‘cfv 6497 Fincfn 8886 infcinf 9382 ℝcr 11055 0cc0 11056 1c1 11057 < clt 11194 ℕcn 12158 ℤcz 12504 ∥ cdvds 16141 lcmclcmf 16470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-inf 9384 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-fz 13431 df-fzo 13574 df-seq 13913 df-exp 13974 df-hash 14237 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 df-prod 15794 df-dvds 16142 df-lcmf 16472 |
This theorem is referenced by: lcmfunsnlem 16522 lcmfun 16526 lcm1un 40516 |
Copyright terms: Public domain | W3C validator |