Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardprc | Structured version Visualization version GIF version |
Description: The class of all cardinal numbers is not a set (i.e. is a proper class). Theorem 19.8 of [Eisenberg] p. 310. In this proof (which does not use AC), we cannot use Cantor's construction canth3 10248 to ensure that there is always a cardinal larger than a given cardinal, but we can use Hartogs' construction hartogs 9233 to construct (effectively) (ℵ‘suc 𝐴) from (ℵ‘𝐴), which achieves the same thing. (Contributed by Mario Carneiro, 22-Jan-2013.) |
Ref | Expression |
---|---|
cardprc | ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦)) | |
2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
3 | 1, 2 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦)) |
4 | 3 | cbvabv 2812 | . . 3 ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} = {𝑦 ∣ (card‘𝑦) = 𝑦} |
5 | 4 | cardprclem 9668 | . 2 ⊢ ¬ {𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V |
6 | 5 | nelir 3051 | 1 ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 ∉ wnel 3048 Vcvv 3422 ‘cfv 6418 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-oi 9199 df-har 9246 df-card 9628 |
This theorem is referenced by: alephprc 9786 |
Copyright terms: Public domain | W3C validator |