| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardprc | Structured version Visualization version GIF version | ||
| Description: The class of all cardinal numbers is not a set (i.e. is a proper class). Theorem 19.8 of [Eisenberg] p. 310. In this proof (which does not use AC), we cannot use Cantor's construction canth3 10584 to ensure that there is always a cardinal larger than a given cardinal, but we can use Hartogs' construction hartogs 9567 to construct (effectively) (ℵ‘suc 𝐴) from (ℵ‘𝐴), which achieves the same thing. (Contributed by Mario Carneiro, 22-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardprc | ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6887 | . . . . 5 ⊢ (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦)) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 3 | 1, 2 | eqeq12d 2750 | . . . 4 ⊢ (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦)) |
| 4 | 3 | cbvabv 2804 | . . 3 ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} = {𝑦 ∣ (card‘𝑦) = 𝑦} |
| 5 | 4 | cardprclem 10002 | . 2 ⊢ ¬ {𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V |
| 6 | 5 | nelir 3038 | 1 ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {cab 2712 ∉ wnel 3035 Vcvv 3464 ‘cfv 6542 cardccrd 9958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-oi 9533 df-har 9580 df-card 9962 |
| This theorem is referenced by: alephprc 10122 |
| Copyright terms: Public domain | W3C validator |