MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprc Structured version   Visualization version   GIF version

Theorem cardprc 9975
Description: The class of all cardinal numbers is not a set (i.e. is a proper class). Theorem 19.8 of [Eisenberg] p. 310. In this proof (which does not use AC), we cannot use Cantor's construction canth3 10556 to ensure that there is always a cardinal larger than a given cardinal, but we can use Hartogs' construction hartogs 9539 to construct (effectively) (β„΅β€˜suc 𝐴) from (β„΅β€˜π΄), which achieves the same thing. (Contributed by Mario Carneiro, 22-Jan-2013.)
Assertion
Ref Expression
cardprc {π‘₯ ∣ (cardβ€˜π‘₯) = π‘₯} βˆ‰ V

Proof of Theorem cardprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . 5 (π‘₯ = 𝑦 β†’ (cardβ€˜π‘₯) = (cardβ€˜π‘¦))
2 id 22 . . . . 5 (π‘₯ = 𝑦 β†’ π‘₯ = 𝑦)
31, 2eqeq12d 2749 . . . 4 (π‘₯ = 𝑦 β†’ ((cardβ€˜π‘₯) = π‘₯ ↔ (cardβ€˜π‘¦) = 𝑦))
43cbvabv 2806 . . 3 {π‘₯ ∣ (cardβ€˜π‘₯) = π‘₯} = {𝑦 ∣ (cardβ€˜π‘¦) = 𝑦}
54cardprclem 9974 . 2 Β¬ {π‘₯ ∣ (cardβ€˜π‘₯) = π‘₯} ∈ V
65nelir 3050 1 {π‘₯ ∣ (cardβ€˜π‘₯) = π‘₯} βˆ‰ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  {cab 2710   βˆ‰ wnel 3047  Vcvv 3475  β€˜cfv 6544  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-oi 9505  df-har 9552  df-card 9934
This theorem is referenced by:  alephprc  10094
  Copyright terms: Public domain W3C validator