![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardprc | Structured version Visualization version GIF version |
Description: The class of all cardinal numbers is not a set (i.e. is a proper class). Theorem 19.8 of [Eisenberg] p. 310. In this proof (which does not use AC), we cannot use Cantor's construction canth3 10600 to ensure that there is always a cardinal larger than a given cardinal, but we can use Hartogs' construction hartogs 9583 to construct (effectively) (ℵ‘suc 𝐴) from (ℵ‘𝐴), which achieves the same thing. (Contributed by Mario Carneiro, 22-Jan-2013.) |
Ref | Expression |
---|---|
cardprc | ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6900 | . . . . 5 ⊢ (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦)) | |
2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
3 | 1, 2 | eqeq12d 2741 | . . . 4 ⊢ (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦)) |
4 | 3 | cbvabv 2798 | . . 3 ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} = {𝑦 ∣ (card‘𝑦) = 𝑦} |
5 | 4 | cardprclem 10018 | . 2 ⊢ ¬ {𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V |
6 | 5 | nelir 3038 | 1 ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 {cab 2702 ∉ wnel 3035 Vcvv 3461 ‘cfv 6553 cardccrd 9974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-se 5637 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7379 df-ov 7426 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-oi 9549 df-har 9596 df-card 9978 |
This theorem is referenced by: alephprc 10138 |
Copyright terms: Public domain | W3C validator |