MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprc Structured version   Visualization version   GIF version

Theorem cardprc 10019
Description: The class of all cardinal numbers is not a set (i.e. is a proper class). Theorem 19.8 of [Eisenberg] p. 310. In this proof (which does not use AC), we cannot use Cantor's construction canth3 10600 to ensure that there is always a cardinal larger than a given cardinal, but we can use Hartogs' construction hartogs 9583 to construct (effectively) (ℵ‘suc 𝐴) from (ℵ‘𝐴), which achieves the same thing. (Contributed by Mario Carneiro, 22-Jan-2013.)
Assertion
Ref Expression
cardprc {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V

Proof of Theorem cardprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6900 . . . . 5 (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦))
2 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
31, 2eqeq12d 2741 . . . 4 (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦))
43cbvabv 2798 . . 3 {𝑥 ∣ (card‘𝑥) = 𝑥} = {𝑦 ∣ (card‘𝑦) = 𝑦}
54cardprclem 10018 . 2 ¬ {𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V
65nelir 3038 1 {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  {cab 2702  wnel 3035  Vcvv 3461  cfv 6553  cardccrd 9974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-oi 9549  df-har 9596  df-card 9978
This theorem is referenced by:  alephprc  10138
  Copyright terms: Public domain W3C validator