MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprc Structured version   Visualization version   GIF version

Theorem cardprc 10003
Description: The class of all cardinal numbers is not a set (i.e. is a proper class). Theorem 19.8 of [Eisenberg] p. 310. In this proof (which does not use AC), we cannot use Cantor's construction canth3 10584 to ensure that there is always a cardinal larger than a given cardinal, but we can use Hartogs' construction hartogs 9567 to construct (effectively) (ℵ‘suc 𝐴) from (ℵ‘𝐴), which achieves the same thing. (Contributed by Mario Carneiro, 22-Jan-2013.)
Assertion
Ref Expression
cardprc {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V

Proof of Theorem cardprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6887 . . . . 5 (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦))
2 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
31, 2eqeq12d 2750 . . . 4 (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦))
43cbvabv 2804 . . 3 {𝑥 ∣ (card‘𝑥) = 𝑥} = {𝑦 ∣ (card‘𝑦) = 𝑦}
54cardprclem 10002 . 2 ¬ {𝑥 ∣ (card‘𝑥) = 𝑥} ∈ V
65nelir 3038 1 {𝑥 ∣ (card‘𝑥) = 𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2712  wnel 3035  Vcvv 3464  cfv 6542  cardccrd 9958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-oi 9533  df-har 9580  df-card 9962
This theorem is referenced by:  alephprc  10122
  Copyright terms: Public domain W3C validator