Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4fppr1 Structured version   Visualization version   GIF version

Theorem 4fppr1 45139
Description: 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
4fppr1 4 ∈ ( FPPr ‘1)

Proof of Theorem 4fppr1
StepHypRef Expression
1 4z 12337 . . 3 4 ∈ ℤ
2 uzid 12579 . . 3 (4 ∈ ℤ → 4 ∈ (ℤ‘4))
31, 2ax-mp 5 . 2 4 ∈ (ℤ‘4)
4 4nprm 16381 . . 3 ¬ 4 ∈ ℙ
54nelir 3053 . 2 4 ∉ ℙ
6 4m1e3 12085 . . . . . 6 (4 − 1) = 3
76oveq2i 7279 . . . . 5 (1↑(4 − 1)) = (1↑3)
8 3z 12336 . . . . . 6 3 ∈ ℤ
9 1exp 13793 . . . . . 6 (3 ∈ ℤ → (1↑3) = 1)
108, 9ax-mp 5 . . . . 5 (1↑3) = 1
117, 10eqtri 2767 . . . 4 (1↑(4 − 1)) = 1
1211oveq1i 7278 . . 3 ((1↑(4 − 1)) mod 4) = (1 mod 4)
13 4re 12040 . . . 4 4 ∈ ℝ
14 1lt4 12132 . . . 4 1 < 4
15 1mod 13604 . . . 4 ((4 ∈ ℝ ∧ 1 < 4) → (1 mod 4) = 1)
1613, 14, 15mp2an 688 . . 3 (1 mod 4) = 1
1712, 16eqtri 2767 . 2 ((1↑(4 − 1)) mod 4) = 1
18 1nn 11967 . . 3 1 ∈ ℕ
19 fpprel 45132 . . 3 (1 ∈ ℕ → (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1)))
2018, 19ax-mp 5 . 2 (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1))
213, 5, 17, 20mpbir3an 1339 1 4 ∈ ( FPPr ‘1)
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085   = wceq 1541  wcel 2109  wnel 3050   class class class wbr 5078  cfv 6430  (class class class)co 7268  cr 10854  1c1 10856   < clt 10993  cmin 11188  cn 11956  3c3 12012  4c4 12013  cz 12302  cuz 12564   mod cmo 13570  cexp 13763  cprime 16357   FPPr cfppr 45128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-dvds 15945  df-prm 16358  df-fppr 45129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator