Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4fppr1 Structured version   Visualization version   GIF version

Theorem 4fppr1 47660
Description: 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
4fppr1 4 ∈ ( FPPr ‘1)

Proof of Theorem 4fppr1
StepHypRef Expression
1 4z 12649 . . 3 4 ∈ ℤ
2 uzid 12891 . . 3 (4 ∈ ℤ → 4 ∈ (ℤ‘4))
31, 2ax-mp 5 . 2 4 ∈ (ℤ‘4)
4 4nprm 16729 . . 3 ¬ 4 ∈ ℙ
54nelir 3047 . 2 4 ∉ ℙ
6 4m1e3 12393 . . . . . 6 (4 − 1) = 3
76oveq2i 7442 . . . . 5 (1↑(4 − 1)) = (1↑3)
8 3z 12648 . . . . . 6 3 ∈ ℤ
9 1exp 14129 . . . . . 6 (3 ∈ ℤ → (1↑3) = 1)
108, 9ax-mp 5 . . . . 5 (1↑3) = 1
117, 10eqtri 2763 . . . 4 (1↑(4 − 1)) = 1
1211oveq1i 7441 . . 3 ((1↑(4 − 1)) mod 4) = (1 mod 4)
13 4re 12348 . . . 4 4 ∈ ℝ
14 1lt4 12440 . . . 4 1 < 4
15 1mod 13940 . . . 4 ((4 ∈ ℝ ∧ 1 < 4) → (1 mod 4) = 1)
1613, 14, 15mp2an 692 . . 3 (1 mod 4) = 1
1712, 16eqtri 2763 . 2 ((1↑(4 − 1)) mod 4) = 1
18 1nn 12275 . . 3 1 ∈ ℕ
19 fpprel 47653 . . 3 (1 ∈ ℕ → (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1)))
2018, 19ax-mp 5 . 2 (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1))
213, 5, 17, 20mpbir3an 1340 1 4 ∈ ( FPPr ‘1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1537  wcel 2106  wnel 3044   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   < clt 11293  cmin 11490  cn 12264  3c3 12320  4c4 12321  cz 12611  cuz 12876   mod cmo 13906  cexp 14099  cprime 16705   FPPr cfppr 47649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-prm 16706  df-fppr 47650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator