| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4fppr1 | Structured version Visualization version GIF version | ||
| Description: 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| 4fppr1 | ⊢ 4 ∈ ( FPPr ‘1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4z 12506 | . . 3 ⊢ 4 ∈ ℤ | |
| 2 | uzid 12747 | . . 3 ⊢ (4 ∈ ℤ → 4 ∈ (ℤ≥‘4)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 4 ∈ (ℤ≥‘4) |
| 4 | 4nprm 16606 | . . 3 ⊢ ¬ 4 ∈ ℙ | |
| 5 | 4 | nelir 3035 | . 2 ⊢ 4 ∉ ℙ |
| 6 | 4m1e3 12249 | . . . . . 6 ⊢ (4 − 1) = 3 | |
| 7 | 6 | oveq2i 7357 | . . . . 5 ⊢ (1↑(4 − 1)) = (1↑3) |
| 8 | 3z 12505 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 9 | 1exp 13998 | . . . . . 6 ⊢ (3 ∈ ℤ → (1↑3) = 1) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (1↑3) = 1 |
| 11 | 7, 10 | eqtri 2754 | . . . 4 ⊢ (1↑(4 − 1)) = 1 |
| 12 | 11 | oveq1i 7356 | . . 3 ⊢ ((1↑(4 − 1)) mod 4) = (1 mod 4) |
| 13 | 4re 12209 | . . . 4 ⊢ 4 ∈ ℝ | |
| 14 | 1lt4 12296 | . . . 4 ⊢ 1 < 4 | |
| 15 | 1mod 13807 | . . . 4 ⊢ ((4 ∈ ℝ ∧ 1 < 4) → (1 mod 4) = 1) | |
| 16 | 13, 14, 15 | mp2an 692 | . . 3 ⊢ (1 mod 4) = 1 |
| 17 | 12, 16 | eqtri 2754 | . 2 ⊢ ((1↑(4 − 1)) mod 4) = 1 |
| 18 | 1nn 12136 | . . 3 ⊢ 1 ∈ ℕ | |
| 19 | fpprel 47767 | . . 3 ⊢ (1 ∈ ℕ → (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ≥‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1))) | |
| 20 | 18, 19 | ax-mp 5 | . 2 ⊢ (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ≥‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1)) |
| 21 | 3, 5, 17, 20 | mpbir3an 1342 | 1 ⊢ 4 ∈ ( FPPr ‘1) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 < clt 11146 − cmin 11344 ℕcn 12125 3c3 12181 4c4 12182 ℤcz 12468 ℤ≥cuz 12732 mod cmo 13773 ↑cexp 13968 ℙcprime 16582 FPPr cfppr 47763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-fppr 47764 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |