Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4fppr1 Structured version   Visualization version   GIF version

Theorem 4fppr1 47077
Description: 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
4fppr1 4 ∈ ( FPPr ‘1)

Proof of Theorem 4fppr1
StepHypRef Expression
1 4z 12632 . . 3 4 ∈ ℤ
2 uzid 12873 . . 3 (4 ∈ ℤ → 4 ∈ (ℤ‘4))
31, 2ax-mp 5 . 2 4 ∈ (ℤ‘4)
4 4nprm 16671 . . 3 ¬ 4 ∈ ℙ
54nelir 3045 . 2 4 ∉ ℙ
6 4m1e3 12377 . . . . . 6 (4 − 1) = 3
76oveq2i 7435 . . . . 5 (1↑(4 − 1)) = (1↑3)
8 3z 12631 . . . . . 6 3 ∈ ℤ
9 1exp 14094 . . . . . 6 (3 ∈ ℤ → (1↑3) = 1)
108, 9ax-mp 5 . . . . 5 (1↑3) = 1
117, 10eqtri 2755 . . . 4 (1↑(4 − 1)) = 1
1211oveq1i 7434 . . 3 ((1↑(4 − 1)) mod 4) = (1 mod 4)
13 4re 12332 . . . 4 4 ∈ ℝ
14 1lt4 12424 . . . 4 1 < 4
15 1mod 13906 . . . 4 ((4 ∈ ℝ ∧ 1 < 4) → (1 mod 4) = 1)
1613, 14, 15mp2an 690 . . 3 (1 mod 4) = 1
1712, 16eqtri 2755 . 2 ((1↑(4 − 1)) mod 4) = 1
18 1nn 12259 . . 3 1 ∈ ℕ
19 fpprel 47070 . . 3 (1 ∈ ℕ → (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1)))
2018, 19ax-mp 5 . 2 (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1))
213, 5, 17, 20mpbir3an 1338 1 4 ∈ ( FPPr ‘1)
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1084   = wceq 1533  wcel 2098  wnel 3042   class class class wbr 5150  cfv 6551  (class class class)co 7424  cr 11143  1c1 11145   < clt 11284  cmin 11480  cn 12248  3c3 12304  4c4 12305  cz 12594  cuz 12858   mod cmo 13872  cexp 14064  cprime 16647   FPPr cfppr 47066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-fl 13795  df-mod 13873  df-seq 14005  df-exp 14065  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-dvds 16237  df-prm 16648  df-fppr 47067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator