![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4fppr1 | Structured version Visualization version GIF version |
Description: 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
4fppr1 | ⊢ 4 ∈ ( FPPr ‘1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4z 12632 | . . 3 ⊢ 4 ∈ ℤ | |
2 | uzid 12873 | . . 3 ⊢ (4 ∈ ℤ → 4 ∈ (ℤ≥‘4)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 4 ∈ (ℤ≥‘4) |
4 | 4nprm 16671 | . . 3 ⊢ ¬ 4 ∈ ℙ | |
5 | 4 | nelir 3045 | . 2 ⊢ 4 ∉ ℙ |
6 | 4m1e3 12377 | . . . . . 6 ⊢ (4 − 1) = 3 | |
7 | 6 | oveq2i 7435 | . . . . 5 ⊢ (1↑(4 − 1)) = (1↑3) |
8 | 3z 12631 | . . . . . 6 ⊢ 3 ∈ ℤ | |
9 | 1exp 14094 | . . . . . 6 ⊢ (3 ∈ ℤ → (1↑3) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (1↑3) = 1 |
11 | 7, 10 | eqtri 2755 | . . . 4 ⊢ (1↑(4 − 1)) = 1 |
12 | 11 | oveq1i 7434 | . . 3 ⊢ ((1↑(4 − 1)) mod 4) = (1 mod 4) |
13 | 4re 12332 | . . . 4 ⊢ 4 ∈ ℝ | |
14 | 1lt4 12424 | . . . 4 ⊢ 1 < 4 | |
15 | 1mod 13906 | . . . 4 ⊢ ((4 ∈ ℝ ∧ 1 < 4) → (1 mod 4) = 1) | |
16 | 13, 14, 15 | mp2an 690 | . . 3 ⊢ (1 mod 4) = 1 |
17 | 12, 16 | eqtri 2755 | . 2 ⊢ ((1↑(4 − 1)) mod 4) = 1 |
18 | 1nn 12259 | . . 3 ⊢ 1 ∈ ℕ | |
19 | fpprel 47070 | . . 3 ⊢ (1 ∈ ℕ → (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ≥‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1))) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ (4 ∈ ( FPPr ‘1) ↔ (4 ∈ (ℤ≥‘4) ∧ 4 ∉ ℙ ∧ ((1↑(4 − 1)) mod 4) = 1)) |
21 | 3, 5, 17, 20 | mpbir3an 1338 | 1 ⊢ 4 ∈ ( FPPr ‘1) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∉ wnel 3042 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 ℝcr 11143 1c1 11145 < clt 11284 − cmin 11480 ℕcn 12248 3c3 12304 4c4 12305 ℤcz 12594 ℤ≥cuz 12858 mod cmo 13872 ↑cexp 14064 ℙcprime 16647 FPPr cfppr 47066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-n0 12509 df-z 12595 df-uz 12859 df-rp 13013 df-fl 13795 df-mod 13873 df-seq 14005 df-exp 14065 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-dvds 16237 df-prm 16648 df-fppr 47067 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |