| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2nodd | Structured version Visualization version GIF version | ||
| Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| oddinmgm.e | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} |
| Ref | Expression |
|---|---|
| 2nodd | ⊢ 2 ∉ 𝑂 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnz 12696 | . . . . . . . . 9 ⊢ ¬ (1 / 2) ∈ ℤ | |
| 2 | eleq1 2829 | . . . . . . . . 9 ⊢ ((1 / 2) = 𝑥 → ((1 / 2) ∈ ℤ ↔ 𝑥 ∈ ℤ)) | |
| 3 | 1, 2 | mtbii 326 | . . . . . . . 8 ⊢ ((1 / 2) = 𝑥 → ¬ 𝑥 ∈ ℤ) |
| 4 | 3 | con2i 139 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥) |
| 5 | 1cnd 11256 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 1 ∈ ℂ) | |
| 6 | zcn 12618 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 7 | 2cnd 12344 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 2 ∈ ℂ) | |
| 8 | 2ne0 12370 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
| 9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 2 ≠ 0) |
| 10 | 5, 6, 7, 9 | divmul2d 12076 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥))) |
| 11 | 4, 10 | mtbid 324 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥)) |
| 12 | eqcom 2744 | . . . . . . . 8 ⊢ (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2) | |
| 13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2)) |
| 14 | 7, 6 | mulcld 11281 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ) |
| 15 | subadd2 11512 | . . . . . . . . 9 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((2 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 2)) | |
| 16 | 15 | bicomd 223 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥))) |
| 17 | 7, 5, 14, 16 | syl3anc 1373 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥))) |
| 18 | 2m1e1 12392 | . . . . . . . . 9 ⊢ (2 − 1) = 1 | |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (2 − 1) = 1) |
| 20 | 19 | eqeq1d 2739 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((2 − 1) = (2 · 𝑥) ↔ 1 = (2 · 𝑥))) |
| 21 | 13, 17, 20 | 3bitrd 305 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ 1 = (2 · 𝑥))) |
| 22 | 11, 21 | mtbird 325 | . . . . 5 ⊢ (𝑥 ∈ ℤ → ¬ 2 = ((2 · 𝑥) + 1)) |
| 23 | 22 | nrex 3074 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1) |
| 24 | 23 | intnan 486 | . . 3 ⊢ ¬ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)) |
| 25 | eqeq1 2741 | . . . . 5 ⊢ (𝑧 = 2 → (𝑧 = ((2 · 𝑥) + 1) ↔ 2 = ((2 · 𝑥) + 1))) | |
| 26 | 25 | rexbidv 3179 | . . . 4 ⊢ (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))) |
| 27 | oddinmgm.e | . . . 4 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} | |
| 28 | 26, 27 | elrab2 3695 | . . 3 ⊢ (2 ∈ 𝑂 ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))) |
| 29 | 24, 28 | mtbir 323 | . 2 ⊢ ¬ 2 ∈ 𝑂 |
| 30 | 29 | nelir 3049 | 1 ⊢ 2 ∉ 𝑂 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∉ wnel 3046 ∃wrex 3070 {crab 3436 (class class class)co 7431 ℂcc 11153 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 − cmin 11492 / cdiv 11920 2c2 12321 ℤcz 12613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 |
| This theorem is referenced by: oddinmgm 48091 |
| Copyright terms: Public domain | W3C validator |