Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nodd Structured version   Visualization version   GIF version

Theorem 2nodd 44086
Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.)
Hypothesis
Ref Expression
oddinmgm.e 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
Assertion
Ref Expression
2nodd 2 ∉ 𝑂
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑧)

Proof of Theorem 2nodd
StepHypRef Expression
1 halfnz 12063 . . . . . . . . 9 ¬ (1 / 2) ∈ ℤ
2 eleq1 2903 . . . . . . . . 9 ((1 / 2) = 𝑥 → ((1 / 2) ∈ ℤ ↔ 𝑥 ∈ ℤ))
31, 2mtbii 328 . . . . . . . 8 ((1 / 2) = 𝑥 → ¬ 𝑥 ∈ ℤ)
43con2i 141 . . . . . . 7 (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥)
5 1cnd 10639 . . . . . . . 8 (𝑥 ∈ ℤ → 1 ∈ ℂ)
6 zcn 11989 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 2cnd 11718 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ∈ ℂ)
8 2ne0 11744 . . . . . . . . 9 2 ≠ 0
98a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → 2 ≠ 0)
105, 6, 7, 9divmul2d 11452 . . . . . . 7 (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥)))
114, 10mtbid 326 . . . . . 6 (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥))
12 eqcom 2831 . . . . . . . 8 (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2)
1312a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2))
147, 6mulcld 10664 . . . . . . . 8 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
15 subadd2 10893 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((2 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 2))
1615bicomd 225 . . . . . . . 8 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥)))
177, 5, 14, 16syl3anc 1367 . . . . . . 7 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥)))
18 2m1e1 11766 . . . . . . . . 9 (2 − 1) = 1
1918a1i 11 . . . . . . . 8 (𝑥 ∈ ℤ → (2 − 1) = 1)
2019eqeq1d 2826 . . . . . . 7 (𝑥 ∈ ℤ → ((2 − 1) = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
2113, 17, 203bitrd 307 . . . . . 6 (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ 1 = (2 · 𝑥)))
2211, 21mtbird 327 . . . . 5 (𝑥 ∈ ℤ → ¬ 2 = ((2 · 𝑥) + 1))
2322nrex 3272 . . . 4 ¬ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)
2423intnan 489 . . 3 ¬ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))
25 eqeq1 2828 . . . . 5 (𝑧 = 2 → (𝑧 = ((2 · 𝑥) + 1) ↔ 2 = ((2 · 𝑥) + 1)))
2625rexbidv 3300 . . . 4 (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)))
27 oddinmgm.e . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)}
2826, 27elrab2 3686 . . 3 (2 ∈ 𝑂 ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)))
2924, 28mtbir 325 . 2 ¬ 2 ∈ 𝑂
3029nelir 3129 1 2 ∉ 𝑂
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wnel 3126  wrex 3142  {crab 3145  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873   / cdiv 11300  2c2 11695  cz 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985
This theorem is referenced by:  oddinmgm  44089
  Copyright terms: Public domain W3C validator