![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2nodd | Structured version Visualization version GIF version |
Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
Ref | Expression |
---|---|
oddinmgm.e | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} |
Ref | Expression |
---|---|
2nodd | ⊢ 2 ∉ 𝑂 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnz 12721 | . . . . . . . . 9 ⊢ ¬ (1 / 2) ∈ ℤ | |
2 | eleq1 2832 | . . . . . . . . 9 ⊢ ((1 / 2) = 𝑥 → ((1 / 2) ∈ ℤ ↔ 𝑥 ∈ ℤ)) | |
3 | 1, 2 | mtbii 326 | . . . . . . . 8 ⊢ ((1 / 2) = 𝑥 → ¬ 𝑥 ∈ ℤ) |
4 | 3 | con2i 139 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥) |
5 | 1cnd 11285 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 1 ∈ ℂ) | |
6 | zcn 12644 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
7 | 2cnd 12371 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 2 ∈ ℂ) | |
8 | 2ne0 12397 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 2 ≠ 0) |
10 | 5, 6, 7, 9 | divmul2d 12103 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥))) |
11 | 4, 10 | mtbid 324 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥)) |
12 | eqcom 2747 | . . . . . . . 8 ⊢ (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2) | |
13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2)) |
14 | 7, 6 | mulcld 11310 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ) |
15 | subadd2 11540 | . . . . . . . . 9 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((2 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 2)) | |
16 | 15 | bicomd 223 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥))) |
17 | 7, 5, 14, 16 | syl3anc 1371 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥))) |
18 | 2m1e1 12419 | . . . . . . . . 9 ⊢ (2 − 1) = 1 | |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (2 − 1) = 1) |
20 | 19 | eqeq1d 2742 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((2 − 1) = (2 · 𝑥) ↔ 1 = (2 · 𝑥))) |
21 | 13, 17, 20 | 3bitrd 305 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ 1 = (2 · 𝑥))) |
22 | 11, 21 | mtbird 325 | . . . . 5 ⊢ (𝑥 ∈ ℤ → ¬ 2 = ((2 · 𝑥) + 1)) |
23 | 22 | nrex 3080 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1) |
24 | 23 | intnan 486 | . . 3 ⊢ ¬ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)) |
25 | eqeq1 2744 | . . . . 5 ⊢ (𝑧 = 2 → (𝑧 = ((2 · 𝑥) + 1) ↔ 2 = ((2 · 𝑥) + 1))) | |
26 | 25 | rexbidv 3185 | . . . 4 ⊢ (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))) |
27 | oddinmgm.e | . . . 4 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} | |
28 | 26, 27 | elrab2 3711 | . . 3 ⊢ (2 ∈ 𝑂 ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))) |
29 | 24, 28 | mtbir 323 | . 2 ⊢ ¬ 2 ∈ 𝑂 |
30 | 29 | nelir 3055 | 1 ⊢ 2 ∉ 𝑂 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∃wrex 3076 {crab 3443 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 / cdiv 11947 2c2 12348 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 |
This theorem is referenced by: oddinmgm 47898 |
Copyright terms: Public domain | W3C validator |