| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2nodd | Structured version Visualization version GIF version | ||
| Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| oddinmgm.e | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} |
| Ref | Expression |
|---|---|
| 2nodd | ⊢ 2 ∉ 𝑂 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnz 12612 | . . . . . . . . 9 ⊢ ¬ (1 / 2) ∈ ℤ | |
| 2 | eleq1 2816 | . . . . . . . . 9 ⊢ ((1 / 2) = 𝑥 → ((1 / 2) ∈ ℤ ↔ 𝑥 ∈ ℤ)) | |
| 3 | 1, 2 | mtbii 326 | . . . . . . . 8 ⊢ ((1 / 2) = 𝑥 → ¬ 𝑥 ∈ ℤ) |
| 4 | 3 | con2i 139 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥) |
| 5 | 1cnd 11169 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 1 ∈ ℂ) | |
| 6 | zcn 12534 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 7 | 2cnd 12264 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 2 ∈ ℂ) | |
| 8 | 2ne0 12290 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
| 9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 2 ≠ 0) |
| 10 | 5, 6, 7, 9 | divmul2d 11991 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥))) |
| 11 | 4, 10 | mtbid 324 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥)) |
| 12 | eqcom 2736 | . . . . . . . 8 ⊢ (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2) | |
| 13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2)) |
| 14 | 7, 6 | mulcld 11194 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ) |
| 15 | subadd2 11425 | . . . . . . . . 9 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((2 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 2)) | |
| 16 | 15 | bicomd 223 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥))) |
| 17 | 7, 5, 14, 16 | syl3anc 1373 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥))) |
| 18 | 2m1e1 12307 | . . . . . . . . 9 ⊢ (2 − 1) = 1 | |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (2 − 1) = 1) |
| 20 | 19 | eqeq1d 2731 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((2 − 1) = (2 · 𝑥) ↔ 1 = (2 · 𝑥))) |
| 21 | 13, 17, 20 | 3bitrd 305 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ 1 = (2 · 𝑥))) |
| 22 | 11, 21 | mtbird 325 | . . . . 5 ⊢ (𝑥 ∈ ℤ → ¬ 2 = ((2 · 𝑥) + 1)) |
| 23 | 22 | nrex 3057 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1) |
| 24 | 23 | intnan 486 | . . 3 ⊢ ¬ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)) |
| 25 | eqeq1 2733 | . . . . 5 ⊢ (𝑧 = 2 → (𝑧 = ((2 · 𝑥) + 1) ↔ 2 = ((2 · 𝑥) + 1))) | |
| 26 | 25 | rexbidv 3157 | . . . 4 ⊢ (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))) |
| 27 | oddinmgm.e | . . . 4 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} | |
| 28 | 26, 27 | elrab2 3662 | . . 3 ⊢ (2 ∈ 𝑂 ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))) |
| 29 | 24, 28 | mtbir 323 | . 2 ⊢ ¬ 2 ∈ 𝑂 |
| 30 | 29 | nelir 3032 | 1 ⊢ 2 ∉ 𝑂 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∃wrex 3053 {crab 3405 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 / cdiv 11835 2c2 12241 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 |
| This theorem is referenced by: oddinmgm 48163 |
| Copyright terms: Public domain | W3C validator |