| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2nodd | Structured version Visualization version GIF version | ||
| Description: 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| oddinmgm.e | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} |
| Ref | Expression |
|---|---|
| 2nodd | ⊢ 2 ∉ 𝑂 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnz 12557 | . . . . . . . . 9 ⊢ ¬ (1 / 2) ∈ ℤ | |
| 2 | eleq1 2821 | . . . . . . . . 9 ⊢ ((1 / 2) = 𝑥 → ((1 / 2) ∈ ℤ ↔ 𝑥 ∈ ℤ)) | |
| 3 | 1, 2 | mtbii 326 | . . . . . . . 8 ⊢ ((1 / 2) = 𝑥 → ¬ 𝑥 ∈ ℤ) |
| 4 | 3 | con2i 139 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥) |
| 5 | 1cnd 11114 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 1 ∈ ℂ) | |
| 6 | zcn 12480 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 7 | 2cnd 12210 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 2 ∈ ℂ) | |
| 8 | 2ne0 12236 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
| 9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 2 ≠ 0) |
| 10 | 5, 6, 7, 9 | divmul2d 11937 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥))) |
| 11 | 4, 10 | mtbid 324 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥)) |
| 12 | eqcom 2740 | . . . . . . . 8 ⊢ (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2) | |
| 13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ ((2 · 𝑥) + 1) = 2)) |
| 14 | 7, 6 | mulcld 11139 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ) |
| 15 | subadd2 11371 | . . . . . . . . 9 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → ((2 − 1) = (2 · 𝑥) ↔ ((2 · 𝑥) + 1) = 2)) | |
| 16 | 15 | bicomd 223 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 · 𝑥) ∈ ℂ) → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥))) |
| 17 | 7, 5, 14, 16 | syl3anc 1373 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 2 ↔ (2 − 1) = (2 · 𝑥))) |
| 18 | 2m1e1 12253 | . . . . . . . . 9 ⊢ (2 − 1) = 1 | |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → (2 − 1) = 1) |
| 20 | 19 | eqeq1d 2735 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → ((2 − 1) = (2 · 𝑥) ↔ 1 = (2 · 𝑥))) |
| 21 | 13, 17, 20 | 3bitrd 305 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (2 = ((2 · 𝑥) + 1) ↔ 1 = (2 · 𝑥))) |
| 22 | 11, 21 | mtbird 325 | . . . . 5 ⊢ (𝑥 ∈ ℤ → ¬ 2 = ((2 · 𝑥) + 1)) |
| 23 | 22 | nrex 3061 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1) |
| 24 | 23 | intnan 486 | . . 3 ⊢ ¬ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1)) |
| 25 | eqeq1 2737 | . . . . 5 ⊢ (𝑧 = 2 → (𝑧 = ((2 · 𝑥) + 1) ↔ 2 = ((2 · 𝑥) + 1))) | |
| 26 | 25 | rexbidv 3157 | . . . 4 ⊢ (𝑧 = 2 → (∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1) ↔ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))) |
| 27 | oddinmgm.e | . . . 4 ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} | |
| 28 | 26, 27 | elrab2 3646 | . . 3 ⊢ (2 ∈ 𝑂 ↔ (2 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 2 = ((2 · 𝑥) + 1))) |
| 29 | 24, 28 | mtbir 323 | . 2 ⊢ ¬ 2 ∈ 𝑂 |
| 30 | 29 | nelir 3036 | 1 ⊢ 2 ∉ 𝑂 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∉ wnel 3033 ∃wrex 3057 {crab 3396 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 − cmin 11351 / cdiv 11781 2c2 12187 ℤcz 12475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 |
| This theorem is referenced by: oddinmgm 48299 |
| Copyright terms: Public domain | W3C validator |