MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3 Structured version   Visualization version   GIF version

Theorem aaliou3 25060
Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 23-Nov-2014.)
Assertion
Ref Expression
aaliou3 Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∉ 𝔸

Proof of Theorem aaliou3
Dummy variables 𝑖 𝑗 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . 3 (𝑗 ∈ ℕ ↦ (2↑-(!‘𝑗))) = (𝑗 ∈ ℕ ↦ (2↑-(!‘𝑗)))
2 fveq2 6663 . . . . . . 7 (𝑘 = 𝑖 → (!‘𝑘) = (!‘𝑖))
32negeqd 10931 . . . . . 6 (𝑘 = 𝑖 → -(!‘𝑘) = -(!‘𝑖))
43oveq2d 7172 . . . . 5 (𝑘 = 𝑖 → (2↑-(!‘𝑘)) = (2↑-(!‘𝑖)))
54cbvsumv 15114 . . . 4 Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) = Σ𝑖 ∈ ℕ (2↑-(!‘𝑖))
6 fveq2 6663 . . . . . . . . 9 (𝑗 = 𝑖 → (!‘𝑗) = (!‘𝑖))
76negeqd 10931 . . . . . . . 8 (𝑗 = 𝑖 → -(!‘𝑗) = -(!‘𝑖))
87oveq2d 7172 . . . . . . 7 (𝑗 = 𝑖 → (2↑-(!‘𝑗)) = (2↑-(!‘𝑖)))
9 ovex 7189 . . . . . . 7 (2↑-(!‘𝑖)) ∈ V
108, 1, 9fvmpt 6764 . . . . . 6 (𝑖 ∈ ℕ → ((𝑗 ∈ ℕ ↦ (2↑-(!‘𝑗)))‘𝑖) = (2↑-(!‘𝑖)))
1110eqcomd 2764 . . . . 5 (𝑖 ∈ ℕ → (2↑-(!‘𝑖)) = ((𝑗 ∈ ℕ ↦ (2↑-(!‘𝑗)))‘𝑖))
1211sumeq2i 15117 . . . 4 Σ𝑖 ∈ ℕ (2↑-(!‘𝑖)) = Σ𝑖 ∈ ℕ ((𝑗 ∈ ℕ ↦ (2↑-(!‘𝑗)))‘𝑖)
135, 12eqtri 2781 . . 3 Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) = Σ𝑖 ∈ ℕ ((𝑗 ∈ ℕ ↦ (2↑-(!‘𝑗)))‘𝑖)
14 eqid 2758 . . 3 (𝑙 ∈ ℕ ↦ Σ𝑖 ∈ (1...𝑙)((𝑗 ∈ ℕ ↦ (2↑-(!‘𝑗)))‘𝑖)) = (𝑙 ∈ ℕ ↦ Σ𝑖 ∈ (1...𝑙)((𝑗 ∈ ℕ ↦ (2↑-(!‘𝑗)))‘𝑖))
151, 13, 14aaliou3lem9 25059 . 2 ¬ Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∈ 𝔸
1615nelir 3058 1 Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∉ 𝔸
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wnel 3055  cmpt 5116  cfv 6340  (class class class)co 7156  1c1 10589  -cneg 10922  cn 11687  2c2 11742  ...cfz 12952  cexp 13492  !cfa 13696  Σcsu 15103  𝔸caa 25023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-oadd 8122  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-fi 8921  df-sup 8952  df-inf 8953  df-oi 9020  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-xnn0 12020  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-ioc 12797  df-ico 12798  df-icc 12799  df-fz 12953  df-fzo 13096  df-fl 13224  df-seq 13432  df-exp 13493  df-fac 13697  df-hash 13754  df-shft 14487  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-limsup 14889  df-clim 14906  df-rlim 14907  df-sum 15104  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-starv 16652  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-hom 16661  df-cco 16662  df-rest 16768  df-topn 16769  df-0g 16787  df-gsum 16788  df-topgen 16789  df-pt 16790  df-prds 16793  df-xrs 16847  df-qtop 16852  df-imas 16853  df-xps 16855  df-mre 16929  df-mrc 16930  df-acs 16932  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-submnd 18037  df-grp 18186  df-minusg 18187  df-mulg 18306  df-subg 18357  df-cntz 18528  df-cmn 18989  df-mgp 19322  df-ur 19334  df-ring 19381  df-cring 19382  df-subrg 19615  df-psmet 20172  df-xmet 20173  df-met 20174  df-bl 20175  df-mopn 20176  df-fbas 20177  df-fg 20178  df-cnfld 20181  df-top 21608  df-topon 21625  df-topsp 21647  df-bases 21660  df-cld 21733  df-ntr 21734  df-cls 21735  df-nei 21812  df-lp 21850  df-perf 21851  df-cn 21941  df-cnp 21942  df-haus 22029  df-cmp 22101  df-tx 22276  df-hmeo 22469  df-fil 22560  df-fm 22652  df-flim 22653  df-flf 22654  df-xms 23036  df-ms 23037  df-tms 23038  df-cncf 23593  df-0p 24384  df-limc 24579  df-dv 24580  df-dvn 24581  df-cpn 24582  df-ply 24898  df-idp 24899  df-coe 24900  df-dgr 24901  df-quot 25000  df-aa 25024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator