| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zringndrg | Structured version Visualization version GIF version | ||
| Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
| Ref | Expression |
|---|---|
| zringndrg | ⊢ ℤring ∉ DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ne2 12474 | . . . . . . 7 ⊢ 1 ≠ 2 | |
| 2 | 1 | nesymi 2998 | . . . . . 6 ⊢ ¬ 2 = 1 |
| 3 | 2re 12340 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 4 | 0le2 12368 | . . . . . . . 8 ⊢ 0 ≤ 2 | |
| 5 | absid 15335 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . . . 7 ⊢ (abs‘2) = 2 |
| 7 | 6 | eqeq1i 2742 | . . . . . 6 ⊢ ((abs‘2) = 1 ↔ 2 = 1) |
| 8 | 2, 7 | mtbir 323 | . . . . 5 ⊢ ¬ (abs‘2) = 1 |
| 9 | 8 | intnan 486 | . . . 4 ⊢ ¬ (2 ∈ ℤ ∧ (abs‘2) = 1) |
| 10 | zringunit 21477 | . . . 4 ⊢ (2 ∈ (Unit‘ℤring) ↔ (2 ∈ ℤ ∧ (abs‘2) = 1)) | |
| 11 | 9, 10 | mtbir 323 | . . 3 ⊢ ¬ 2 ∈ (Unit‘ℤring) |
| 12 | zringbas 21464 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
| 13 | eqid 2737 | . . . . 5 ⊢ (Unit‘ℤring) = (Unit‘ℤring) | |
| 14 | zring0 21469 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
| 15 | 12, 13, 14 | isdrng 20733 | . . . 4 ⊢ (ℤring ∈ DivRing ↔ (ℤring ∈ Ring ∧ (Unit‘ℤring) = (ℤ ∖ {0}))) |
| 16 | 2z 12649 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 17 | 2ne0 12370 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 18 | eldifsn 4786 | . . . . . 6 ⊢ (2 ∈ (ℤ ∖ {0}) ↔ (2 ∈ ℤ ∧ 2 ≠ 0)) | |
| 19 | 16, 17, 18 | mpbir2an 711 | . . . . 5 ⊢ 2 ∈ (ℤ ∖ {0}) |
| 20 | id 22 | . . . . 5 ⊢ ((Unit‘ℤring) = (ℤ ∖ {0}) → (Unit‘ℤring) = (ℤ ∖ {0})) | |
| 21 | 19, 20 | eleqtrrid 2848 | . . . 4 ⊢ ((Unit‘ℤring) = (ℤ ∖ {0}) → 2 ∈ (Unit‘ℤring)) |
| 22 | 15, 21 | simplbiim 504 | . . 3 ⊢ (ℤring ∈ DivRing → 2 ∈ (Unit‘ℤring)) |
| 23 | 11, 22 | mto 197 | . 2 ⊢ ¬ ℤring ∈ DivRing |
| 24 | 23 | nelir 3049 | 1 ⊢ ℤring ∉ DivRing |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∉ wnel 3046 ∖ cdif 3948 {csn 4626 class class class wbr 5143 ‘cfv 6561 ℝcr 11154 0cc0 11155 1c1 11156 ≤ cle 11296 2c2 12321 ℤcz 12613 abscabs 15273 Ringcrg 20230 Unitcui 20355 DivRingcdr 20729 ℤringczring 21457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-gz 16968 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-subrng 20546 df-subrg 20570 df-drng 20731 df-cnfld 21365 df-zring 21458 |
| This theorem is referenced by: zclmncvs 25182 |
| Copyright terms: Public domain | W3C validator |