![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringndrg | Structured version Visualization version GIF version |
Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
Ref | Expression |
---|---|
zringndrg | ⊢ ℤring ∉ DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ne2 12425 | . . . . . . 7 ⊢ 1 ≠ 2 | |
2 | 1 | nesymi 2997 | . . . . . 6 ⊢ ¬ 2 = 1 |
3 | 2re 12291 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
4 | 0le2 12319 | . . . . . . . 8 ⊢ 0 ≤ 2 | |
5 | absid 15248 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
6 | 3, 4, 5 | mp2an 689 | . . . . . . 7 ⊢ (abs‘2) = 2 |
7 | 6 | eqeq1i 2736 | . . . . . 6 ⊢ ((abs‘2) = 1 ↔ 2 = 1) |
8 | 2, 7 | mtbir 322 | . . . . 5 ⊢ ¬ (abs‘2) = 1 |
9 | 8 | intnan 486 | . . . 4 ⊢ ¬ (2 ∈ ℤ ∧ (abs‘2) = 1) |
10 | zringunit 21238 | . . . 4 ⊢ (2 ∈ (Unit‘ℤring) ↔ (2 ∈ ℤ ∧ (abs‘2) = 1)) | |
11 | 9, 10 | mtbir 322 | . . 3 ⊢ ¬ 2 ∈ (Unit‘ℤring) |
12 | zringbas 21225 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
13 | eqid 2731 | . . . . 5 ⊢ (Unit‘ℤring) = (Unit‘ℤring) | |
14 | zring0 21230 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
15 | 12, 13, 14 | isdrng 20505 | . . . 4 ⊢ (ℤring ∈ DivRing ↔ (ℤring ∈ Ring ∧ (Unit‘ℤring) = (ℤ ∖ {0}))) |
16 | 2z 12599 | . . . . . 6 ⊢ 2 ∈ ℤ | |
17 | 2ne0 12321 | . . . . . 6 ⊢ 2 ≠ 0 | |
18 | eldifsn 4791 | . . . . . 6 ⊢ (2 ∈ (ℤ ∖ {0}) ↔ (2 ∈ ℤ ∧ 2 ≠ 0)) | |
19 | 16, 17, 18 | mpbir2an 708 | . . . . 5 ⊢ 2 ∈ (ℤ ∖ {0}) |
20 | id 22 | . . . . 5 ⊢ ((Unit‘ℤring) = (ℤ ∖ {0}) → (Unit‘ℤring) = (ℤ ∖ {0})) | |
21 | 19, 20 | eleqtrrid 2839 | . . . 4 ⊢ ((Unit‘ℤring) = (ℤ ∖ {0}) → 2 ∈ (Unit‘ℤring)) |
22 | 15, 21 | simplbiim 504 | . . 3 ⊢ (ℤring ∈ DivRing → 2 ∈ (Unit‘ℤring)) |
23 | 11, 22 | mto 196 | . 2 ⊢ ¬ ℤring ∈ DivRing |
24 | 23 | nelir 3048 | 1 ⊢ ℤring ∉ DivRing |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∉ wnel 3045 ∖ cdif 3946 {csn 4629 class class class wbr 5149 ‘cfv 6544 ℝcr 11112 0cc0 11113 1c1 11114 ≤ cle 11254 2c2 12272 ℤcz 12563 abscabs 15186 Ringcrg 20128 Unitcui 20247 DivRingcdr 20501 ℤringczring 21218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-rp 12980 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-gz 16868 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-subrng 20435 df-subrg 20460 df-drng 20503 df-cnfld 21146 df-zring 21219 |
This theorem is referenced by: zclmncvs 24897 |
Copyright terms: Public domain | W3C validator |