![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringndrg | Structured version Visualization version GIF version |
Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
Ref | Expression |
---|---|
zringndrg | ⊢ ℤring ∉ DivRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ne2 11655 | . . . . . . 7 ⊢ 1 ≠ 2 | |
2 | 1 | nesymi 3024 | . . . . . 6 ⊢ ¬ 2 = 1 |
3 | 2re 11514 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
4 | 0le2 11549 | . . . . . . . 8 ⊢ 0 ≤ 2 | |
5 | absid 14517 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
6 | 3, 4, 5 | mp2an 679 | . . . . . . 7 ⊢ (abs‘2) = 2 |
7 | 6 | eqeq1i 2783 | . . . . . 6 ⊢ ((abs‘2) = 1 ↔ 2 = 1) |
8 | 2, 7 | mtbir 315 | . . . . 5 ⊢ ¬ (abs‘2) = 1 |
9 | 8 | intnan 479 | . . . 4 ⊢ ¬ (2 ∈ ℤ ∧ (abs‘2) = 1) |
10 | zringunit 20337 | . . . 4 ⊢ (2 ∈ (Unit‘ℤring) ↔ (2 ∈ ℤ ∧ (abs‘2) = 1)) | |
11 | 9, 10 | mtbir 315 | . . 3 ⊢ ¬ 2 ∈ (Unit‘ℤring) |
12 | zringbas 20325 | . . . . 5 ⊢ ℤ = (Base‘ℤring) | |
13 | eqid 2778 | . . . . 5 ⊢ (Unit‘ℤring) = (Unit‘ℤring) | |
14 | zring0 20329 | . . . . 5 ⊢ 0 = (0g‘ℤring) | |
15 | 12, 13, 14 | isdrng 19229 | . . . 4 ⊢ (ℤring ∈ DivRing ↔ (ℤring ∈ Ring ∧ (Unit‘ℤring) = (ℤ ∖ {0}))) |
16 | 2z 11827 | . . . . . 6 ⊢ 2 ∈ ℤ | |
17 | 2ne0 11551 | . . . . . 6 ⊢ 2 ≠ 0 | |
18 | eldifsn 4593 | . . . . . 6 ⊢ (2 ∈ (ℤ ∖ {0}) ↔ (2 ∈ ℤ ∧ 2 ≠ 0)) | |
19 | 16, 17, 18 | mpbir2an 698 | . . . . 5 ⊢ 2 ∈ (ℤ ∖ {0}) |
20 | id 22 | . . . . 5 ⊢ ((Unit‘ℤring) = (ℤ ∖ {0}) → (Unit‘ℤring) = (ℤ ∖ {0})) | |
21 | 19, 20 | syl5eleqr 2873 | . . . 4 ⊢ ((Unit‘ℤring) = (ℤ ∖ {0}) → 2 ∈ (Unit‘ℤring)) |
22 | 15, 21 | simplbiim 497 | . . 3 ⊢ (ℤring ∈ DivRing → 2 ∈ (Unit‘ℤring)) |
23 | 11, 22 | mto 189 | . 2 ⊢ ¬ ℤring ∈ DivRing |
24 | 23 | nelir 3076 | 1 ⊢ ℤring ∉ DivRing |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∉ wnel 3073 ∖ cdif 3826 {csn 4441 class class class wbr 4929 ‘cfv 6188 ℝcr 10334 0cc0 10335 1c1 10336 ≤ cle 10475 2c2 11495 ℤcz 11793 abscabs 14454 Ringcrg 19020 Unitcui 19112 DivRingcdr 19225 ℤringzring 20319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-tpos 7695 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-rp 12205 df-fz 12709 df-seq 13185 df-exp 13245 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-gz 16122 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-starv 16436 df-tset 16440 df-ple 16441 df-ds 16443 df-unif 16444 df-0g 16571 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-grp 17894 df-minusg 17895 df-subg 18060 df-cmn 18668 df-mgp 18963 df-ur 18975 df-ring 19022 df-cring 19023 df-oppr 19096 df-dvdsr 19114 df-unit 19115 df-invr 19145 df-dvr 19156 df-drng 19227 df-subrg 19256 df-cnfld 20248 df-zring 20320 |
This theorem is referenced by: zclmncvs 23455 |
Copyright terms: Public domain | W3C validator |