Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1447 Structured version   Visualization version   GIF version

Theorem bnj1447 33026
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1447.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1447.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1447.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1447.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1447.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1447.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1447.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1447.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1447.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1447.10 𝑃 = 𝐻
bnj1447.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1447.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1447.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
Assertion
Ref Expression
bnj1447 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑅   𝑥,𝑦   𝑦,𝑧   𝑦,𝑓
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑥,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑥,𝑧,𝑓,𝑑)   𝐺(𝑥,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1447
StepHypRef Expression
1 bnj1447.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1447.10 . . . . . . 7 𝑃 = 𝐻
3 bnj1447.9 . . . . . . . . 9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
4 nfre1 3239 . . . . . . . . . 10 𝑦𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′
54nfab 2913 . . . . . . . . 9 𝑦{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
63, 5nfcxfr 2905 . . . . . . . 8 𝑦𝐻
76nfuni 4846 . . . . . . 7 𝑦 𝐻
82, 7nfcxfr 2905 . . . . . 6 𝑦𝑃
9 nfcv 2907 . . . . . . . 8 𝑦𝑥
10 nfcv 2907 . . . . . . . . 9 𝑦𝐺
11 bnj1447.11 . . . . . . . . . 10 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 nfcv 2907 . . . . . . . . . . . 12 𝑦 pred(𝑥, 𝐴, 𝑅)
138, 12nfres 5893 . . . . . . . . . . 11 𝑦(𝑃 ↾ pred(𝑥, 𝐴, 𝑅))
149, 13nfop 4820 . . . . . . . . . 10 𝑦𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1511, 14nfcxfr 2905 . . . . . . . . 9 𝑦𝑍
1610, 15nffv 6784 . . . . . . . 8 𝑦(𝐺𝑍)
179, 16nfop 4820 . . . . . . 7 𝑦𝑥, (𝐺𝑍)⟩
1817nfsn 4643 . . . . . 6 𝑦{⟨𝑥, (𝐺𝑍)⟩}
198, 18nfun 4099 . . . . 5 𝑦(𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
201, 19nfcxfr 2905 . . . 4 𝑦𝑄
21 nfcv 2907 . . . 4 𝑦𝑧
2220, 21nffv 6784 . . 3 𝑦(𝑄𝑧)
23 bnj1447.13 . . . . 5 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
24 nfcv 2907 . . . . . . 7 𝑦 pred(𝑧, 𝐴, 𝑅)
2520, 24nfres 5893 . . . . . 6 𝑦(𝑄 ↾ pred(𝑧, 𝐴, 𝑅))
2621, 25nfop 4820 . . . . 5 𝑦𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
2723, 26nfcxfr 2905 . . . 4 𝑦𝑊
2810, 27nffv 6784 . . 3 𝑦(𝐺𝑊)
2922, 28nfeq 2920 . 2 𝑦(𝑄𝑧) = (𝐺𝑊)
3029nf5ri 2188 1 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  [wsbc 3716  cun 3885  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  dom cdm 5589  cres 5591   Fn wfn 6428  cfv 6433   predc-bnj14 32667   FrSe w-bnj15 32671   trClc-bnj18 32673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601  df-iota 6391  df-fv 6441
This theorem is referenced by:  bnj1450  33030
  Copyright terms: Public domain W3C validator