Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1447 Structured version   Visualization version   GIF version

Theorem bnj1447 33988
Description: Technical lemma for bnj60 34004. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1447.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1447.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1447.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1447.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1447.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1447.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1447.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1447.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1447.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1447.10 𝑃 = 𝐻
bnj1447.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1447.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1447.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
Assertion
Ref Expression
bnj1447 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑅   𝑥,𝑦   𝑦,𝑧   𝑦,𝑓
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑥,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑥,𝑧,𝑓,𝑑)   𝐺(𝑥,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1447
StepHypRef Expression
1 bnj1447.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1447.10 . . . . . . 7 𝑃 = 𝐻
3 bnj1447.9 . . . . . . . . 9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
4 nfre1 3283 . . . . . . . . . 10 𝑦𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′
54nfab 2910 . . . . . . . . 9 𝑦{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
63, 5nfcxfr 2902 . . . . . . . 8 𝑦𝐻
76nfuni 4911 . . . . . . 7 𝑦 𝐻
82, 7nfcxfr 2902 . . . . . 6 𝑦𝑃
9 nfcv 2904 . . . . . . . 8 𝑦𝑥
10 nfcv 2904 . . . . . . . . 9 𝑦𝐺
11 bnj1447.11 . . . . . . . . . 10 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 nfcv 2904 . . . . . . . . . . . 12 𝑦 pred(𝑥, 𝐴, 𝑅)
138, 12nfres 5978 . . . . . . . . . . 11 𝑦(𝑃 ↾ pred(𝑥, 𝐴, 𝑅))
149, 13nfop 4885 . . . . . . . . . 10 𝑦𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1511, 14nfcxfr 2902 . . . . . . . . 9 𝑦𝑍
1610, 15nffv 6891 . . . . . . . 8 𝑦(𝐺𝑍)
179, 16nfop 4885 . . . . . . 7 𝑦𝑥, (𝐺𝑍)⟩
1817nfsn 4707 . . . . . 6 𝑦{⟨𝑥, (𝐺𝑍)⟩}
198, 18nfun 4163 . . . . 5 𝑦(𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
201, 19nfcxfr 2902 . . . 4 𝑦𝑄
21 nfcv 2904 . . . 4 𝑦𝑧
2220, 21nffv 6891 . . 3 𝑦(𝑄𝑧)
23 bnj1447.13 . . . . 5 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
24 nfcv 2904 . . . . . . 7 𝑦 pred(𝑧, 𝐴, 𝑅)
2520, 24nfres 5978 . . . . . 6 𝑦(𝑄 ↾ pred(𝑧, 𝐴, 𝑅))
2621, 25nfop 4885 . . . . 5 𝑦𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
2723, 26nfcxfr 2902 . . . 4 𝑦𝑊
2810, 27nffv 6891 . . 3 𝑦(𝐺𝑊)
2922, 28nfeq 2917 . 2 𝑦(𝑄𝑧) = (𝐺𝑊)
3029nf5ri 2189 1 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wne 2941  wral 3062  wrex 3071  {crab 3433  [wsbc 3775  cun 3944  wss 3946  c0 4320  {csn 4624  cop 4630   cuni 4904   class class class wbr 5144  dom cdm 5672  cres 5674   Fn wfn 6530  cfv 6535   predc-bnj14 33630   FrSe w-bnj15 33634   trClc-bnj18 33636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-xp 5678  df-res 5684  df-iota 6487  df-fv 6543
This theorem is referenced by:  bnj1450  33992
  Copyright terms: Public domain W3C validator