| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfwrecs | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfwrecs.1 | ⊢ Ⅎ𝑥𝑅 |
| nfwrecs.2 | ⊢ Ⅎ𝑥𝐴 |
| nfwrecs.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfwrecs | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wrecs 8311 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
| 2 | nfwrecs.1 | . . 3 ⊢ Ⅎ𝑥𝑅 | |
| 3 | nfwrecs.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfwrecs.3 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑥2nd | |
| 6 | 4, 5 | nfco 5845 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ 2nd ) |
| 7 | 2, 3, 6 | nffrecs 8282 | . 2 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |
| 8 | 1, 7 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2883 ∘ ccom 5658 2nd c2nd 7987 frecscfrecs 8279 wrecscwrecs 8310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fv 6539 df-ov 7408 df-frecs 8280 df-wrecs 8311 |
| This theorem is referenced by: nfrecs 8389 |
| Copyright terms: Public domain | W3C validator |