| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfwrecs | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfwrecs.1 | ⊢ Ⅎ𝑥𝑅 |
| nfwrecs.2 | ⊢ Ⅎ𝑥𝐴 |
| nfwrecs.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfwrecs | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wrecs 8242 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
| 2 | nfwrecs.1 | . . 3 ⊢ Ⅎ𝑥𝑅 | |
| 3 | nfwrecs.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfwrecs.3 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥2nd | |
| 6 | 4, 5 | nfco 5804 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ 2nd ) |
| 7 | 2, 3, 6 | nffrecs 8213 | . 2 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |
| 8 | 1, 7 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 ∘ ccom 5618 2nd c2nd 7920 frecscfrecs 8210 wrecscwrecs 8241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-fv 6489 df-ov 7349 df-frecs 8211 df-wrecs 8242 |
| This theorem is referenced by: nfrecs 8294 |
| Copyright terms: Public domain | W3C validator |