Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfwrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
Ref | Expression |
---|---|
nfwrecs.1 | ⊢ Ⅎ𝑥𝑅 |
nfwrecs.2 | ⊢ Ⅎ𝑥𝐴 |
nfwrecs.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfwrecs | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wrecs 8099 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
2 | nfwrecs.1 | . . 3 ⊢ Ⅎ𝑥𝑅 | |
3 | nfwrecs.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfwrecs.3 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥2nd | |
6 | 4, 5 | nfco 5763 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ 2nd ) |
7 | 2, 3, 6 | nffrecs 8070 | . 2 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |
8 | 1, 7 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2886 ∘ ccom 5584 2nd c2nd 7803 frecscfrecs 8067 wrecscwrecs 8098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fv 6426 df-ov 7258 df-frecs 8068 df-wrecs 8099 |
This theorem is referenced by: nfrecs 8177 |
Copyright terms: Public domain | W3C validator |