![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfwrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
Ref | Expression |
---|---|
nfwrecs.1 | ⊢ Ⅎ𝑥𝑅 |
nfwrecs.2 | ⊢ Ⅎ𝑥𝐴 |
nfwrecs.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfwrecs | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wrecs 8336 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
2 | nfwrecs.1 | . . 3 ⊢ Ⅎ𝑥𝑅 | |
3 | nfwrecs.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfwrecs.3 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥2nd | |
6 | 4, 5 | nfco 5879 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ 2nd ) |
7 | 2, 3, 6 | nffrecs 8307 | . 2 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |
8 | 1, 7 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 ∘ ccom 5693 2nd c2nd 8012 frecscfrecs 8304 wrecscwrecs 8335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fv 6571 df-ov 7434 df-frecs 8305 df-wrecs 8336 |
This theorem is referenced by: nfrecs 8414 |
Copyright terms: Public domain | W3C validator |