![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfwrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
Ref | Expression |
---|---|
nfwrecs.1 | ⊢ Ⅎ𝑥𝑅 |
nfwrecs.2 | ⊢ Ⅎ𝑥𝐴 |
nfwrecs.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfwrecs | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wrecs 8353 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
2 | nfwrecs.1 | . . 3 ⊢ Ⅎ𝑥𝑅 | |
3 | nfwrecs.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfwrecs.3 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥2nd | |
6 | 4, 5 | nfco 5890 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ 2nd ) |
7 | 2, 3, 6 | nffrecs 8324 | . 2 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |
8 | 1, 7 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ∘ ccom 5704 2nd c2nd 8029 frecscfrecs 8321 wrecscwrecs 8352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-frecs 8322 df-wrecs 8353 |
This theorem is referenced by: nfrecs 8431 |
Copyright terms: Public domain | W3C validator |