MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrecs Structured version   Visualization version   GIF version

Theorem nfwrecs 8323
Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypotheses
Ref Expression
nfwrecs.1 𝑥𝑅
nfwrecs.2 𝑥𝐴
nfwrecs.3 𝑥𝐹
Assertion
Ref Expression
nfwrecs 𝑥wrecs(𝑅, 𝐴, 𝐹)

Proof of Theorem nfwrecs
StepHypRef Expression
1 df-wrecs 8319 . 2 wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
2 nfwrecs.1 . . 3 𝑥𝑅
3 nfwrecs.2 . . 3 𝑥𝐴
4 nfwrecs.3 . . . 4 𝑥𝐹
5 nfcv 2897 . . . 4 𝑥2nd
64, 5nfco 5856 . . 3 𝑥(𝐹 ∘ 2nd )
72, 3, 6nffrecs 8290 . 2 𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
81, 7nfcxfr 2895 1 𝑥wrecs(𝑅, 𝐴, 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2882  ccom 5669  2nd c2nd 7995  frecscfrecs 8287  wrecscwrecs 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-iota 6494  df-fv 6549  df-ov 7416  df-frecs 8288  df-wrecs 8319
This theorem is referenced by:  nfrecs  8397
  Copyright terms: Public domain W3C validator