Step | Hyp | Ref
| Expression |
1 | | df-wrecs 7798 |
. 2
⊢
wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
2 | | nfv 1892 |
. . . . . 6
⊢
Ⅎ𝑥 𝑓 Fn 𝑦 |
3 | | nfcv 2949 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑦 |
4 | | nfwrecs.2 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
5 | 3, 4 | nfss 3882 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑦 ⊆ 𝐴 |
6 | | nfwrecs.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑅 |
7 | | nfcv 2949 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑧 |
8 | 6, 4, 7 | nfpred 6028 |
. . . . . . . . 9
⊢
Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) |
9 | 8, 3 | nfss 3882 |
. . . . . . . 8
⊢
Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
10 | 3, 9 | nfral 3191 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
11 | 5, 10 | nfan 1881 |
. . . . . 6
⊢
Ⅎ𝑥(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) |
12 | | nfwrecs.3 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐹 |
13 | | nfcv 2949 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑓 |
14 | 13, 8 | nfres 5736 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)) |
15 | 12, 14 | nffv 6548 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
16 | 15 | nfeq2 2964 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
17 | 3, 16 | nfral 3191 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
18 | 2, 11, 17 | nf3an 1883 |
. . . . 5
⊢
Ⅎ𝑥(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
19 | 18 | nfex 2306 |
. . . 4
⊢
Ⅎ𝑥∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
20 | 19 | nfab 2955 |
. . 3
⊢
Ⅎ𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
21 | 20 | nfuni 4751 |
. 2
⊢
Ⅎ𝑥∪ {𝑓
∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
22 | 1, 21 | nfcxfr 2947 |
1
⊢
Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |