MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrecs Structured version   Visualization version   GIF version

Theorem nfwrecs 8296
Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypotheses
Ref Expression
nfwrecs.1 𝑥𝑅
nfwrecs.2 𝑥𝐴
nfwrecs.3 𝑥𝐹
Assertion
Ref Expression
nfwrecs 𝑥wrecs(𝑅, 𝐴, 𝐹)

Proof of Theorem nfwrecs
StepHypRef Expression
1 df-wrecs 8294 . 2 wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
2 nfwrecs.1 . . 3 𝑥𝑅
3 nfwrecs.2 . . 3 𝑥𝐴
4 nfwrecs.3 . . . 4 𝑥𝐹
5 nfcv 2892 . . . 4 𝑥2nd
64, 5nfco 5832 . . 3 𝑥(𝐹 ∘ 2nd )
72, 3, 6nffrecs 8265 . 2 𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
81, 7nfcxfr 2890 1 𝑥wrecs(𝑅, 𝐴, 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2877  ccom 5645  2nd c2nd 7970  frecscfrecs 8262  wrecscwrecs 8293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fv 6522  df-ov 7393  df-frecs 8263  df-wrecs 8294
This theorem is referenced by:  nfrecs  8346
  Copyright terms: Public domain W3C validator