Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
nfrecs.f | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfrecs | ⊢ Ⅎ𝑥recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-recs 8202 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
2 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑥 E | |
3 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑥On | |
4 | nfrecs.f | . . 3 ⊢ Ⅎ𝑥𝐹 | |
5 | 2, 3, 4 | nfwrecs 8132 | . 2 ⊢ Ⅎ𝑥wrecs( E , On, 𝐹) |
6 | 1, 5 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 E cep 5494 Oncon0 6266 wrecscwrecs 8127 recscrecs 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fv 6441 df-ov 7278 df-frecs 8097 df-wrecs 8128 df-recs 8202 |
This theorem is referenced by: nfrdg 8245 nfoi 9273 aomclem8 40886 |
Copyright terms: Public domain | W3C validator |