MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrecs Structured version   Visualization version   GIF version

Theorem nfrecs 8371
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f 𝑥𝐹
Assertion
Ref Expression
nfrecs 𝑥recs(𝐹)

Proof of Theorem nfrecs
StepHypRef Expression
1 df-recs 8367 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 nfcv 2895 . . 3 𝑥 E
3 nfcv 2895 . . 3 𝑥On
4 nfrecs.f . . 3 𝑥𝐹
52, 3, 4nfwrecs 8297 . 2 𝑥wrecs( E , On, 𝐹)
61, 5nfcxfr 2893 1 𝑥recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2875   E cep 5570  Oncon0 6355  wrecscwrecs 8292  recscrecs 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-xp 5673  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-iota 6486  df-fv 6542  df-ov 7405  df-frecs 8262  df-wrecs 8293  df-recs 8367
This theorem is referenced by:  nfrdg  8410  nfoi  9506  aomclem8  42355
  Copyright terms: Public domain W3C validator