MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrecs Structured version   Visualization version   GIF version

Theorem nfrecs 8300
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f 𝑥𝐹
Assertion
Ref Expression
nfrecs 𝑥recs(𝐹)

Proof of Theorem nfrecs
StepHypRef Expression
1 df-recs 8297 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 nfcv 2895 . . 3 𝑥 E
3 nfcv 2895 . . 3 𝑥On
4 nfrecs.f . . 3 𝑥𝐹
52, 3, 4nfwrecs 8250 . 2 𝑥wrecs( E , On, 𝐹)
61, 5nfcxfr 2893 1 𝑥recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2880   E cep 5518  Oncon0 6311  wrecscwrecs 8247  recscrecs 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-iota 6442  df-fv 6494  df-ov 7355  df-frecs 8217  df-wrecs 8248  df-recs 8297
This theorem is referenced by:  nfrdg  8339  nfoi  9407  aomclem8  43178
  Copyright terms: Public domain W3C validator