MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrecs Structured version   Visualization version   GIF version

Theorem nfrecs 8374
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f 𝑥𝐹
Assertion
Ref Expression
nfrecs 𝑥recs(𝐹)

Proof of Theorem nfrecs
StepHypRef Expression
1 df-recs 8370 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 nfcv 2903 . . 3 𝑥 E
3 nfcv 2903 . . 3 𝑥On
4 nfrecs.f . . 3 𝑥𝐹
52, 3, 4nfwrecs 8300 . 2 𝑥wrecs( E , On, 𝐹)
61, 5nfcxfr 2901 1 𝑥recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2883   E cep 5579  Oncon0 6364  wrecscwrecs 8295  recscrecs 8369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-iota 6495  df-fv 6551  df-ov 7411  df-frecs 8265  df-wrecs 8296  df-recs 8370
This theorem is referenced by:  nfrdg  8413  nfoi  9508  aomclem8  41793
  Copyright terms: Public domain W3C validator