MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrecs Structured version   Visualization version   GIF version

Theorem nfrecs 8394
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
nfrecs.f 𝑥𝐹
Assertion
Ref Expression
nfrecs 𝑥recs(𝐹)

Proof of Theorem nfrecs
StepHypRef Expression
1 df-recs 8390 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 nfcv 2899 . . 3 𝑥 E
3 nfcv 2899 . . 3 𝑥On
4 nfrecs.f . . 3 𝑥𝐹
52, 3, 4nfwrecs 8320 . 2 𝑥wrecs( E , On, 𝐹)
61, 5nfcxfr 2897 1 𝑥recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2884   E cep 5557  Oncon0 6357  wrecscwrecs 8315  recscrecs 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fv 6544  df-ov 7413  df-frecs 8285  df-wrecs 8316  df-recs 8390
This theorem is referenced by:  nfrdg  8433  nfoi  9533  aomclem8  43052
  Copyright terms: Public domain W3C validator