| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrecs | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfrecs.f | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfrecs | ⊢ Ⅎ𝑥recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-recs 8390 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 2 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑥 E | |
| 3 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑥On | |
| 4 | nfrecs.f | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | 2, 3, 4 | nfwrecs 8320 | . 2 ⊢ Ⅎ𝑥wrecs( E , On, 𝐹) |
| 6 | 1, 5 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥recs(𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2884 E cep 5557 Oncon0 6357 wrecscwrecs 8315 recscrecs 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fv 6544 df-ov 7413 df-frecs 8285 df-wrecs 8316 df-recs 8390 |
| This theorem is referenced by: nfrdg 8433 nfoi 9533 aomclem8 43052 |
| Copyright terms: Public domain | W3C validator |