| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrecs | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfrecs.f | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfrecs | ⊢ Ⅎ𝑥recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-recs 8343 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 2 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥 E | |
| 3 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥On | |
| 4 | nfrecs.f | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | 2, 3, 4 | nfwrecs 8296 | . 2 ⊢ Ⅎ𝑥wrecs( E , On, 𝐹) |
| 6 | 1, 5 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥recs(𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 E cep 5540 Oncon0 6335 wrecscwrecs 8293 recscrecs 8342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fv 6522 df-ov 7393 df-frecs 8263 df-wrecs 8294 df-recs 8343 |
| This theorem is referenced by: nfrdg 8385 nfoi 9474 aomclem8 43057 |
| Copyright terms: Public domain | W3C validator |