Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
nfrecs.f | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfrecs | ⊢ Ⅎ𝑥recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-recs 8018 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
2 | nfcv 2919 | . . 3 ⊢ Ⅎ𝑥 E | |
3 | nfcv 2919 | . . 3 ⊢ Ⅎ𝑥On | |
4 | nfrecs.f | . . 3 ⊢ Ⅎ𝑥𝐹 | |
5 | 2, 3, 4 | nfwrecs 7959 | . 2 ⊢ Ⅎ𝑥wrecs( E , On, 𝐹) |
6 | 1, 5 | nfcxfr 2917 | 1 ⊢ Ⅎ𝑥recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2899 E cep 5434 Oncon0 6169 wrecscwrecs 7956 recscrecs 8017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-xp 5530 df-cnv 5532 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-iota 6294 df-fv 6343 df-wrecs 7957 df-recs 8018 |
This theorem is referenced by: nfrdg 8060 nfoi 9011 aomclem8 40400 |
Copyright terms: Public domain | W3C validator |