| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrecs | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfrecs.f | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfrecs | ⊢ Ⅎ𝑥recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-recs 8297 | . 2 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 2 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑥 E | |
| 3 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑥On | |
| 4 | nfrecs.f | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | 2, 3, 4 | nfwrecs 8250 | . 2 ⊢ Ⅎ𝑥wrecs( E , On, 𝐹) |
| 6 | 1, 5 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥recs(𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 E cep 5518 Oncon0 6311 wrecscwrecs 8247 recscrecs 8296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7355 df-frecs 8217 df-wrecs 8248 df-recs 8297 |
| This theorem is referenced by: nfrdg 8339 nfoi 9407 aomclem8 43178 |
| Copyright terms: Public domain | W3C validator |