| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovg | Structured version Visualization version GIF version | ||
| Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.) |
| Ref | Expression |
|---|---|
| ndmovg | ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7349 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | eleq2 2820 | . . . . . 6 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆))) | |
| 3 | opelxp 5650 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
| 4 | 2, 3 | bitrdi 287 | . . . . 5 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) |
| 5 | 4 | notbid 318 | . . . 4 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 ↔ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) |
| 6 | ndmfv 6854 | . . . 4 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
| 7 | 5, 6 | biimtrrdi 254 | . . 3 ⊢ (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐹‘〈𝐴, 𝐵〉) = ∅)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) = ∅) |
| 9 | 1, 8 | eqtrid 2778 | 1 ⊢ ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4280 〈cop 4579 × cxp 5612 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: ndmov 7530 curry1val 8035 curry2val 8039 1div0 11776 1div0OLD 11777 repsundef 14678 cshnz 14699 mamufacex 22311 mavmulsolcl 22466 mavmul0g 22468 iscau2 25204 1div0apr 30448 rrxsphere 48848 |
| Copyright terms: Public domain | W3C validator |