Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovg Structured version   Visualization version   GIF version

Theorem ndmovg 7322
 Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.)
Assertion
Ref Expression
ndmovg ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ndmovg
StepHypRef Expression
1 df-ov 7148 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 eleq2 2878 . . . . . 6 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)))
3 opelxp 5559 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
42, 3syl6bb 290 . . . . 5 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ (𝐴𝑅𝐵𝑆)))
54notbid 321 . . . 4 (dom 𝐹 = (𝑅 × 𝑆) → (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ¬ (𝐴𝑅𝐵𝑆)))
6 ndmfv 6685 . . . 4 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
75, 6syl6bir 257 . . 3 (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴𝑅𝐵𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅))
87imp 410 . 2 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
91, 8syl5eq 2845 1 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∅c0 4246  ⟨cop 4534   × cxp 5521  dom cdm 5523  ‘cfv 6332  (class class class)co 7145 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3444  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-xp 5529  df-dm 5533  df-iota 6291  df-fv 6340  df-ov 7148 This theorem is referenced by:  ndmov  7323  curry1val  7796  curry2val  7800  1div0  11306  repsundef  14144  cshnz  14165  mamufacex  21037  mavmulsolcl  21197  mavmul0g  21199  iscau2  23922  1div0apr  28297  rrxsphere  45328
 Copyright terms: Public domain W3C validator