MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovg Structured version   Visualization version   GIF version

Theorem ndmovg 7433
Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.)
Assertion
Ref Expression
ndmovg ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ndmovg
StepHypRef Expression
1 df-ov 7258 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 eleq2 2827 . . . . . 6 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)))
3 opelxp 5616 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
42, 3bitrdi 286 . . . . 5 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ (𝐴𝑅𝐵𝑆)))
54notbid 317 . . . 4 (dom 𝐹 = (𝑅 × 𝑆) → (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ¬ (𝐴𝑅𝐵𝑆)))
6 ndmfv 6786 . . . 4 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
75, 6syl6bir 253 . . 3 (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴𝑅𝐵𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅))
87imp 406 . 2 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
91, 8eqtrid 2790 1 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  c0 4253  cop 4564   × cxp 5578  dom cdm 5580  cfv 6418  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  ndmov  7434  curry1val  7916  curry2val  7920  1div0  11564  repsundef  14412  cshnz  14433  mamufacex  21448  mavmulsolcl  21608  mavmul0g  21610  iscau2  24346  1div0apr  28733  rrxsphere  45982
  Copyright terms: Public domain W3C validator