MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovg Structured version   Visualization version   GIF version

Theorem ndmovg 7532
Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.)
Assertion
Ref Expression
ndmovg ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ndmovg
StepHypRef Expression
1 df-ov 7352 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 eleq2 2817 . . . . . 6 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)))
3 opelxp 5655 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
42, 3bitrdi 287 . . . . 5 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ (𝐴𝑅𝐵𝑆)))
54notbid 318 . . . 4 (dom 𝐹 = (𝑅 × 𝑆) → (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ¬ (𝐴𝑅𝐵𝑆)))
6 ndmfv 6855 . . . 4 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
75, 6biimtrrdi 254 . . 3 (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴𝑅𝐵𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅))
87imp 406 . 2 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
91, 8eqtrid 2776 1 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4284  cop 4583   × cxp 5617  dom cdm 5619  cfv 6482  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-dm 5629  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by:  ndmov  7533  curry1val  8038  curry2val  8042  1div0  11779  1div0OLD  11780  repsundef  14677  cshnz  14698  mamufacex  22281  mavmulsolcl  22436  mavmul0g  22438  iscau2  25175  1div0apr  30416  rrxsphere  48753
  Copyright terms: Public domain W3C validator