MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovg Structured version   Visualization version   GIF version

Theorem ndmovg 7497
Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.)
Assertion
Ref Expression
ndmovg ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ndmovg
StepHypRef Expression
1 df-ov 7320 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 eleq2 2826 . . . . . 6 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)))
3 opelxp 5644 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆) ↔ (𝐴𝑅𝐵𝑆))
42, 3bitrdi 286 . . . . 5 (dom 𝐹 = (𝑅 × 𝑆) → (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ (𝐴𝑅𝐵𝑆)))
54notbid 317 . . . 4 (dom 𝐹 = (𝑅 × 𝑆) → (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 ↔ ¬ (𝐴𝑅𝐵𝑆)))
6 ndmfv 6844 . . . 4 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
75, 6syl6bir 253 . . 3 (dom 𝐹 = (𝑅 × 𝑆) → (¬ (𝐴𝑅𝐵𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅))
87imp 407 . 2 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
91, 8eqtrid 2789 1 ((dom 𝐹 = (𝑅 × 𝑆) ∧ ¬ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  c0 4267  cop 4577   × cxp 5606  dom cdm 5608  cfv 6466  (class class class)co 7317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-xp 5614  df-dm 5618  df-iota 6418  df-fv 6474  df-ov 7320
This theorem is referenced by:  ndmov  7498  curry1val  7992  curry2val  7996  1div0  11714  repsundef  14563  cshnz  14584  mamufacex  21621  mavmulsolcl  21783  mavmul0g  21785  iscau2  24524  1div0apr  28968  rrxsphere  46359
  Copyright terms: Public domain W3C validator