![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsfv | Structured version Visualization version GIF version |
Description: The value of the interior (closure) expressed in terms of the closure (interior). (Contributed by RP, 25-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclsfv.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclsfv | ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . 4 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | 1, 2, 3 | ntrclsfv2 43110 | . . 3 ⊢ (𝜑 → (𝐷‘𝐾) = 𝐼) |
5 | 4 | fveq1d 6893 | . 2 ⊢ (𝜑 → ((𝐷‘𝐾)‘𝑆) = (𝐼‘𝑆)) |
6 | 2, 3 | ntrclsbex 43088 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | 1, 2, 3 | ntrclskex 43108 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
8 | eqid 2731 | . . 3 ⊢ (𝐷‘𝐾) = (𝐷‘𝐾) | |
9 | ntrclsfv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
10 | eqid 2731 | . . 3 ⊢ ((𝐷‘𝐾)‘𝑆) = ((𝐷‘𝐾)‘𝑆) | |
11 | 1, 2, 6, 7, 8, 9, 10 | dssmapfv3d 43073 | . 2 ⊢ (𝜑 → ((𝐷‘𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
12 | 5, 11 | eqtr3d 2773 | 1 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∖ cdif 3945 𝒫 cpw 4602 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-map 8826 |
This theorem is referenced by: ntrclsfveq1 43114 ntrclsfveq2 43115 ntrclsfveq 43116 ntrclsss 43117 ntrclscls00 43120 ntrclsk4 43126 |
Copyright terms: Public domain | W3C validator |