Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfv Structured version   Visualization version   GIF version

Theorem ntrclsfv 44041
Description: The value of the interior (closure) expressed in terms of the closure (interior). (Contributed by RP, 25-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclsfv.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclsfv (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsfv
StepHypRef Expression
1 ntrcls.o . . . 4 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . 4 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . 4 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsfv2 44038 . . 3 (𝜑 → (𝐷𝐾) = 𝐼)
54fveq1d 6862 . 2 (𝜑 → ((𝐷𝐾)‘𝑆) = (𝐼𝑆))
62, 3ntrclsbex 44016 . . 3 (𝜑𝐵 ∈ V)
71, 2, 3ntrclskex 44036 . . 3 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
8 eqid 2730 . . 3 (𝐷𝐾) = (𝐷𝐾)
9 ntrclsfv.s . . 3 (𝜑𝑆 ∈ 𝒫 𝐵)
10 eqid 2730 . . 3 ((𝐷𝐾)‘𝑆) = ((𝐷𝐾)‘𝑆)
111, 2, 6, 7, 8, 9, 10dssmapfv3d 44001 . 2 (𝜑 → ((𝐷𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
125, 11eqtr3d 2767 1 (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3913  𝒫 cpw 4565   class class class wbr 5109  cmpt 5190  cfv 6513  (class class class)co 7389  m cmap 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803
This theorem is referenced by:  ntrclsfveq1  44042  ntrclsfveq2  44043  ntrclsfveq  44044  ntrclsss  44045  ntrclscls00  44048  ntrclsk4  44054
  Copyright terms: Public domain W3C validator