| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclscls00 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| Ref | Expression |
|---|---|
| ntrclscls00 | ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 2 | ntrcls.d | . . . . . 6 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | ntrcls.r | . . . . . 6 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 4 | 1, 2, 3 | ntrclsfv1 44079 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
| 5 | 4 | fveq1d 6878 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐼)‘∅) = (𝐾‘∅)) |
| 6 | 2, 3 | ntrclsbex 44058 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 7 | 1, 2, 3 | ntrclsiex 44077 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 8 | eqid 2735 | . . . . 5 ⊢ (𝐷‘𝐼) = (𝐷‘𝐼) | |
| 9 | 0elpw 5326 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐵 | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝒫 𝐵) |
| 11 | eqid 2735 | . . . . 5 ⊢ ((𝐷‘𝐼)‘∅) = ((𝐷‘𝐼)‘∅) | |
| 12 | 1, 2, 6, 7, 8, 10, 11 | dssmapfv3d 44043 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐼)‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅)))) |
| 13 | 5, 12 | eqtr3d 2772 | . . 3 ⊢ (𝜑 → (𝐾‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅)))) |
| 14 | dif0 4353 | . . . . . . 7 ⊢ (𝐵 ∖ ∅) = 𝐵 | |
| 15 | 14 | fveq2i 6879 | . . . . . 6 ⊢ (𝐼‘(𝐵 ∖ ∅)) = (𝐼‘𝐵) |
| 16 | id 22 | . . . . . 6 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐼‘𝐵) = 𝐵) | |
| 17 | 15, 16 | eqtrid 2782 | . . . . 5 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐼‘(𝐵 ∖ ∅)) = 𝐵) |
| 18 | 17 | difeq2d 4101 | . . . 4 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = (𝐵 ∖ 𝐵)) |
| 19 | difid 4351 | . . . 4 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 20 | 18, 19 | eqtrdi 2786 | . . 3 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = ∅) |
| 21 | 13, 20 | sylan9eq 2790 | . 2 ⊢ ((𝜑 ∧ (𝐼‘𝐵) = 𝐵) → (𝐾‘∅) = ∅) |
| 22 | pwidg 4595 | . . . . 5 ⊢ (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵) | |
| 23 | 6, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐵) |
| 24 | 1, 2, 3, 23 | ntrclsfv 44083 | . . 3 ⊢ (𝜑 → (𝐼‘𝐵) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵)))) |
| 25 | 19 | fveq2i 6879 | . . . . . 6 ⊢ (𝐾‘(𝐵 ∖ 𝐵)) = (𝐾‘∅) |
| 26 | id 22 | . . . . . 6 ⊢ ((𝐾‘∅) = ∅ → (𝐾‘∅) = ∅) | |
| 27 | 25, 26 | eqtrid 2782 | . . . . 5 ⊢ ((𝐾‘∅) = ∅ → (𝐾‘(𝐵 ∖ 𝐵)) = ∅) |
| 28 | 27 | difeq2d 4101 | . . . 4 ⊢ ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵))) = (𝐵 ∖ ∅)) |
| 29 | 28, 14 | eqtrdi 2786 | . . 3 ⊢ ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵))) = 𝐵) |
| 30 | 24, 29 | sylan9eq 2790 | . 2 ⊢ ((𝜑 ∧ (𝐾‘∅) = ∅) → (𝐼‘𝐵) = 𝐵) |
| 31 | 21, 30 | impbida 800 | 1 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ∅c0 4308 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |