Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclscls00 Structured version   Visualization version   GIF version

Theorem ntrclscls00 43306
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclscls00 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐼,𝑘   𝑗,𝐾,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝐼(𝑖)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclscls00
StepHypRef Expression
1 ntrcls.o . . . . . 6 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsfv1 43295 . . . . 5 (𝜑 → (𝐷𝐼) = 𝐾)
54fveq1d 6883 . . . 4 (𝜑 → ((𝐷𝐼)‘∅) = (𝐾‘∅))
62, 3ntrclsbex 43274 . . . . 5 (𝜑𝐵 ∈ V)
71, 2, 3ntrclsiex 43293 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
8 eqid 2724 . . . . 5 (𝐷𝐼) = (𝐷𝐼)
9 0elpw 5344 . . . . . 6 ∅ ∈ 𝒫 𝐵
109a1i 11 . . . . 5 (𝜑 → ∅ ∈ 𝒫 𝐵)
11 eqid 2724 . . . . 5 ((𝐷𝐼)‘∅) = ((𝐷𝐼)‘∅)
121, 2, 6, 7, 8, 10, 11dssmapfv3d 43259 . . . 4 (𝜑 → ((𝐷𝐼)‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))))
135, 12eqtr3d 2766 . . 3 (𝜑 → (𝐾‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))))
14 dif0 4364 . . . . . . 7 (𝐵 ∖ ∅) = 𝐵
1514fveq2i 6884 . . . . . 6 (𝐼‘(𝐵 ∖ ∅)) = (𝐼𝐵)
16 id 22 . . . . . 6 ((𝐼𝐵) = 𝐵 → (𝐼𝐵) = 𝐵)
1715, 16eqtrid 2776 . . . . 5 ((𝐼𝐵) = 𝐵 → (𝐼‘(𝐵 ∖ ∅)) = 𝐵)
1817difeq2d 4114 . . . 4 ((𝐼𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = (𝐵𝐵))
19 difid 4362 . . . 4 (𝐵𝐵) = ∅
2018, 19eqtrdi 2780 . . 3 ((𝐼𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = ∅)
2113, 20sylan9eq 2784 . 2 ((𝜑 ∧ (𝐼𝐵) = 𝐵) → (𝐾‘∅) = ∅)
22 pwidg 4614 . . . . 5 (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵)
236, 22syl 17 . . . 4 (𝜑𝐵 ∈ 𝒫 𝐵)
241, 2, 3, 23ntrclsfv 43299 . . 3 (𝜑 → (𝐼𝐵) = (𝐵 ∖ (𝐾‘(𝐵𝐵))))
2519fveq2i 6884 . . . . . 6 (𝐾‘(𝐵𝐵)) = (𝐾‘∅)
26 id 22 . . . . . 6 ((𝐾‘∅) = ∅ → (𝐾‘∅) = ∅)
2725, 26eqtrid 2776 . . . . 5 ((𝐾‘∅) = ∅ → (𝐾‘(𝐵𝐵)) = ∅)
2827difeq2d 4114 . . . 4 ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵𝐵))) = (𝐵 ∖ ∅))
2928, 14eqtrdi 2780 . . 3 ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵𝐵))) = 𝐵)
3024, 29sylan9eq 2784 . 2 ((𝜑 ∧ (𝐾‘∅) = ∅) → (𝐼𝐵) = 𝐵)
3121, 30impbida 798 1 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3466  cdif 3937  c0 4314  𝒫 cpw 4594   class class class wbr 5138  cmpt 5221  cfv 6533  (class class class)co 7401  m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator