Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclscls00 Structured version   Visualization version   GIF version

Theorem ntrclscls00 44164
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclscls00 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐼,𝑘   𝑗,𝐾,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝐼(𝑖)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclscls00
StepHypRef Expression
1 ntrcls.o . . . . . 6 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsfv1 44153 . . . . 5 (𝜑 → (𝐷𝐼) = 𝐾)
54fveq1d 6830 . . . 4 (𝜑 → ((𝐷𝐼)‘∅) = (𝐾‘∅))
62, 3ntrclsbex 44132 . . . . 5 (𝜑𝐵 ∈ V)
71, 2, 3ntrclsiex 44151 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
8 eqid 2731 . . . . 5 (𝐷𝐼) = (𝐷𝐼)
9 0elpw 5296 . . . . . 6 ∅ ∈ 𝒫 𝐵
109a1i 11 . . . . 5 (𝜑 → ∅ ∈ 𝒫 𝐵)
11 eqid 2731 . . . . 5 ((𝐷𝐼)‘∅) = ((𝐷𝐼)‘∅)
121, 2, 6, 7, 8, 10, 11dssmapfv3d 44117 . . . 4 (𝜑 → ((𝐷𝐼)‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))))
135, 12eqtr3d 2768 . . 3 (𝜑 → (𝐾‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))))
14 dif0 4327 . . . . . . 7 (𝐵 ∖ ∅) = 𝐵
1514fveq2i 6831 . . . . . 6 (𝐼‘(𝐵 ∖ ∅)) = (𝐼𝐵)
16 id 22 . . . . . 6 ((𝐼𝐵) = 𝐵 → (𝐼𝐵) = 𝐵)
1715, 16eqtrid 2778 . . . . 5 ((𝐼𝐵) = 𝐵 → (𝐼‘(𝐵 ∖ ∅)) = 𝐵)
1817difeq2d 4075 . . . 4 ((𝐼𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = (𝐵𝐵))
19 difid 4325 . . . 4 (𝐵𝐵) = ∅
2018, 19eqtrdi 2782 . . 3 ((𝐼𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = ∅)
2113, 20sylan9eq 2786 . 2 ((𝜑 ∧ (𝐼𝐵) = 𝐵) → (𝐾‘∅) = ∅)
22 pwidg 4569 . . . . 5 (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵)
236, 22syl 17 . . . 4 (𝜑𝐵 ∈ 𝒫 𝐵)
241, 2, 3, 23ntrclsfv 44157 . . 3 (𝜑 → (𝐼𝐵) = (𝐵 ∖ (𝐾‘(𝐵𝐵))))
2519fveq2i 6831 . . . . . 6 (𝐾‘(𝐵𝐵)) = (𝐾‘∅)
26 id 22 . . . . . 6 ((𝐾‘∅) = ∅ → (𝐾‘∅) = ∅)
2725, 26eqtrid 2778 . . . . 5 ((𝐾‘∅) = ∅ → (𝐾‘(𝐵𝐵)) = ∅)
2827difeq2d 4075 . . . 4 ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵𝐵))) = (𝐵 ∖ ∅))
2928, 14eqtrdi 2782 . . 3 ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵𝐵))) = 𝐵)
3024, 29sylan9eq 2786 . 2 ((𝜑 ∧ (𝐾‘∅) = ∅) → (𝐼𝐵) = 𝐵)
3121, 30impbida 800 1 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  c0 4282  𝒫 cpw 4549   class class class wbr 5093  cmpt 5174  cfv 6487  (class class class)co 7352  m cmap 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator