| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclscls00 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| Ref | Expression |
|---|---|
| ntrclscls00 | ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 2 | ntrcls.d | . . . . . 6 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | ntrcls.r | . . . . . 6 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 4 | 1, 2, 3 | ntrclsfv1 44051 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
| 5 | 4 | fveq1d 6863 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐼)‘∅) = (𝐾‘∅)) |
| 6 | 2, 3 | ntrclsbex 44030 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 7 | 1, 2, 3 | ntrclsiex 44049 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 8 | eqid 2730 | . . . . 5 ⊢ (𝐷‘𝐼) = (𝐷‘𝐼) | |
| 9 | 0elpw 5314 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐵 | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝒫 𝐵) |
| 11 | eqid 2730 | . . . . 5 ⊢ ((𝐷‘𝐼)‘∅) = ((𝐷‘𝐼)‘∅) | |
| 12 | 1, 2, 6, 7, 8, 10, 11 | dssmapfv3d 44015 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐼)‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅)))) |
| 13 | 5, 12 | eqtr3d 2767 | . . 3 ⊢ (𝜑 → (𝐾‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅)))) |
| 14 | dif0 4344 | . . . . . . 7 ⊢ (𝐵 ∖ ∅) = 𝐵 | |
| 15 | 14 | fveq2i 6864 | . . . . . 6 ⊢ (𝐼‘(𝐵 ∖ ∅)) = (𝐼‘𝐵) |
| 16 | id 22 | . . . . . 6 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐼‘𝐵) = 𝐵) | |
| 17 | 15, 16 | eqtrid 2777 | . . . . 5 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐼‘(𝐵 ∖ ∅)) = 𝐵) |
| 18 | 17 | difeq2d 4092 | . . . 4 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = (𝐵 ∖ 𝐵)) |
| 19 | difid 4342 | . . . 4 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
| 20 | 18, 19 | eqtrdi 2781 | . . 3 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = ∅) |
| 21 | 13, 20 | sylan9eq 2785 | . 2 ⊢ ((𝜑 ∧ (𝐼‘𝐵) = 𝐵) → (𝐾‘∅) = ∅) |
| 22 | pwidg 4586 | . . . . 5 ⊢ (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵) | |
| 23 | 6, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐵) |
| 24 | 1, 2, 3, 23 | ntrclsfv 44055 | . . 3 ⊢ (𝜑 → (𝐼‘𝐵) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵)))) |
| 25 | 19 | fveq2i 6864 | . . . . . 6 ⊢ (𝐾‘(𝐵 ∖ 𝐵)) = (𝐾‘∅) |
| 26 | id 22 | . . . . . 6 ⊢ ((𝐾‘∅) = ∅ → (𝐾‘∅) = ∅) | |
| 27 | 25, 26 | eqtrid 2777 | . . . . 5 ⊢ ((𝐾‘∅) = ∅ → (𝐾‘(𝐵 ∖ 𝐵)) = ∅) |
| 28 | 27 | difeq2d 4092 | . . . 4 ⊢ ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵))) = (𝐵 ∖ ∅)) |
| 29 | 28, 14 | eqtrdi 2781 | . . 3 ⊢ ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵))) = 𝐵) |
| 30 | 24, 29 | sylan9eq 2785 | . 2 ⊢ ((𝜑 ∧ (𝐾‘∅) = ∅) → (𝐼‘𝐵) = 𝐵) |
| 31 | 21, 30 | impbida 800 | 1 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |