![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclscls00 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
Ref | Expression |
---|---|
ntrclscls00 | ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . . . . 6 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . . . 6 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | 1, 2, 3 | ntrclsfv1 42482 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) |
5 | 4 | fveq1d 6864 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐼)‘∅) = (𝐾‘∅)) |
6 | 2, 3 | ntrclsbex 42461 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
7 | 1, 2, 3 | ntrclsiex 42480 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
8 | eqid 2731 | . . . . 5 ⊢ (𝐷‘𝐼) = (𝐷‘𝐼) | |
9 | 0elpw 5331 | . . . . . 6 ⊢ ∅ ∈ 𝒫 𝐵 | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∅ ∈ 𝒫 𝐵) |
11 | eqid 2731 | . . . . 5 ⊢ ((𝐷‘𝐼)‘∅) = ((𝐷‘𝐼)‘∅) | |
12 | 1, 2, 6, 7, 8, 10, 11 | dssmapfv3d 42446 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐼)‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅)))) |
13 | 5, 12 | eqtr3d 2773 | . . 3 ⊢ (𝜑 → (𝐾‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅)))) |
14 | dif0 4352 | . . . . . . 7 ⊢ (𝐵 ∖ ∅) = 𝐵 | |
15 | 14 | fveq2i 6865 | . . . . . 6 ⊢ (𝐼‘(𝐵 ∖ ∅)) = (𝐼‘𝐵) |
16 | id 22 | . . . . . 6 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐼‘𝐵) = 𝐵) | |
17 | 15, 16 | eqtrid 2783 | . . . . 5 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐼‘(𝐵 ∖ ∅)) = 𝐵) |
18 | 17 | difeq2d 4102 | . . . 4 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = (𝐵 ∖ 𝐵)) |
19 | difid 4350 | . . . 4 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
20 | 18, 19 | eqtrdi 2787 | . . 3 ⊢ ((𝐼‘𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = ∅) |
21 | 13, 20 | sylan9eq 2791 | . 2 ⊢ ((𝜑 ∧ (𝐼‘𝐵) = 𝐵) → (𝐾‘∅) = ∅) |
22 | pwidg 4600 | . . . . 5 ⊢ (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵) | |
23 | 6, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐵) |
24 | 1, 2, 3, 23 | ntrclsfv 42486 | . . 3 ⊢ (𝜑 → (𝐼‘𝐵) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵)))) |
25 | 19 | fveq2i 6865 | . . . . . 6 ⊢ (𝐾‘(𝐵 ∖ 𝐵)) = (𝐾‘∅) |
26 | id 22 | . . . . . 6 ⊢ ((𝐾‘∅) = ∅ → (𝐾‘∅) = ∅) | |
27 | 25, 26 | eqtrid 2783 | . . . . 5 ⊢ ((𝐾‘∅) = ∅ → (𝐾‘(𝐵 ∖ 𝐵)) = ∅) |
28 | 27 | difeq2d 4102 | . . . 4 ⊢ ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵))) = (𝐵 ∖ ∅)) |
29 | 28, 14 | eqtrdi 2787 | . . 3 ⊢ ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝐵))) = 𝐵) |
30 | 24, 29 | sylan9eq 2791 | . 2 ⊢ ((𝜑 ∧ (𝐾‘∅) = ∅) → (𝐼‘𝐵) = 𝐵) |
31 | 21, 30 | impbida 799 | 1 ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3459 ∖ cdif 3925 ∅c0 4302 𝒫 cpw 4580 class class class wbr 5125 ↦ cmpt 5208 ‘cfv 6516 (class class class)co 7377 ↑m cmap 8787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5262 ax-sep 5276 ax-nul 5283 ax-pow 5340 ax-pr 5404 ax-un 7692 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3365 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-id 5551 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-ov 7380 df-oprab 7381 df-mpo 7382 df-1st 7941 df-2nd 7942 df-map 8789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |