Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclscls00 Structured version   Visualization version   GIF version

Theorem ntrclscls00 40414
 Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclscls00 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐼,𝑘   𝑗,𝐾,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝐼(𝑖)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)

Proof of Theorem ntrclscls00
StepHypRef Expression
1 ntrcls.o . . . . . 6 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsfv1 40403 . . . . 5 (𝜑 → (𝐷𝐼) = 𝐾)
54fveq1d 6671 . . . 4 (𝜑 → ((𝐷𝐼)‘∅) = (𝐾‘∅))
62, 3ntrclsbex 40382 . . . . 5 (𝜑𝐵 ∈ V)
71, 2, 3ntrclsiex 40401 . . . . 5 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
8 eqid 2821 . . . . 5 (𝐷𝐼) = (𝐷𝐼)
9 0elpw 5255 . . . . . 6 ∅ ∈ 𝒫 𝐵
109a1i 11 . . . . 5 (𝜑 → ∅ ∈ 𝒫 𝐵)
11 eqid 2821 . . . . 5 ((𝐷𝐼)‘∅) = ((𝐷𝐼)‘∅)
121, 2, 6, 7, 8, 10, 11dssmapfv3d 40363 . . . 4 (𝜑 → ((𝐷𝐼)‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))))
135, 12eqtr3d 2858 . . 3 (𝜑 → (𝐾‘∅) = (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))))
14 dif0 4331 . . . . . . 7 (𝐵 ∖ ∅) = 𝐵
1514fveq2i 6672 . . . . . 6 (𝐼‘(𝐵 ∖ ∅)) = (𝐼𝐵)
16 id 22 . . . . . 6 ((𝐼𝐵) = 𝐵 → (𝐼𝐵) = 𝐵)
1715, 16syl5eq 2868 . . . . 5 ((𝐼𝐵) = 𝐵 → (𝐼‘(𝐵 ∖ ∅)) = 𝐵)
1817difeq2d 4098 . . . 4 ((𝐼𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = (𝐵𝐵))
19 difid 4329 . . . 4 (𝐵𝐵) = ∅
2018, 19syl6eq 2872 . . 3 ((𝐼𝐵) = 𝐵 → (𝐵 ∖ (𝐼‘(𝐵 ∖ ∅))) = ∅)
2113, 20sylan9eq 2876 . 2 ((𝜑 ∧ (𝐼𝐵) = 𝐵) → (𝐾‘∅) = ∅)
22 pwidg 4560 . . . . 5 (𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵)
236, 22syl 17 . . . 4 (𝜑𝐵 ∈ 𝒫 𝐵)
241, 2, 3, 23ntrclsfv 40407 . . 3 (𝜑 → (𝐼𝐵) = (𝐵 ∖ (𝐾‘(𝐵𝐵))))
2519fveq2i 6672 . . . . . 6 (𝐾‘(𝐵𝐵)) = (𝐾‘∅)
26 id 22 . . . . . 6 ((𝐾‘∅) = ∅ → (𝐾‘∅) = ∅)
2725, 26syl5eq 2868 . . . . 5 ((𝐾‘∅) = ∅ → (𝐾‘(𝐵𝐵)) = ∅)
2827difeq2d 4098 . . . 4 ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵𝐵))) = (𝐵 ∖ ∅))
2928, 14syl6eq 2872 . . 3 ((𝐾‘∅) = ∅ → (𝐵 ∖ (𝐾‘(𝐵𝐵))) = 𝐵)
3024, 29sylan9eq 2876 . 2 ((𝜑 ∧ (𝐾‘∅) = ∅) → (𝐼𝐵) = 𝐵)
3121, 30impbida 799 1 (𝜑 → ((𝐼𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   = wceq 1533   ∈ wcel 2110  Vcvv 3494   ∖ cdif 3932  ∅c0 4290  𝒫 cpw 4538   class class class wbr 5065   ↦ cmpt 5145  ‘cfv 6354  (class class class)co 7155   ↑m cmap 8405 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-map 8407 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator