![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclselnel1 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrcls.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ntrcls.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
ntrclselnel1 | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
2 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | ntrcls.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
4 | 1, 2, 3 | ntrclsfv2 43110 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐾) = 𝐼) |
5 | 4 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → 𝐼 = (𝐷‘𝐾)) |
6 | 5 | fveq1d 6894 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) = ((𝐷‘𝐾)‘𝑆)) |
7 | 2, 3 | ntrclsbex 43088 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
8 | 1, 2, 3 | ntrclskex 43108 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
9 | eqid 2731 | . . . . 5 ⊢ (𝐷‘𝐾) = (𝐷‘𝐾) | |
10 | ntrcls.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
11 | eqid 2731 | . . . . 5 ⊢ ((𝐷‘𝐾)‘𝑆) = ((𝐷‘𝐾)‘𝑆) | |
12 | 1, 2, 7, 8, 9, 10, 11 | dssmapfv3d 43073 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
13 | 6, 12 | eqtrd 2771 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
14 | 13 | eleq2d 2818 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))))) |
15 | ntrcls.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
16 | eldif 3959 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆))))) |
18 | 15, 17 | mpbirand 704 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
19 | 14, 18 | bitrd 278 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∖ cdif 3946 𝒫 cpw 4603 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7412 ↑m cmap 8823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-map 8825 |
This theorem is referenced by: ntrclselnel2 43112 clsneiel1 43162 neicvgel1 43173 |
Copyright terms: Public domain | W3C validator |