| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclselnel1 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| ntrcls.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ntrcls.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| ntrclselnel1 | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 2 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | ntrcls.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 4 | 1, 2, 3 | ntrclsfv2 44154 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐾) = 𝐼) |
| 5 | 4 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → 𝐼 = (𝐷‘𝐾)) |
| 6 | 5 | fveq1d 6830 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) = ((𝐷‘𝐾)‘𝑆)) |
| 7 | 2, 3 | ntrclsbex 44132 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 8 | 1, 2, 3 | ntrclskex 44152 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 9 | eqid 2731 | . . . . 5 ⊢ (𝐷‘𝐾) = (𝐷‘𝐾) | |
| 10 | ntrcls.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 11 | eqid 2731 | . . . . 5 ⊢ ((𝐷‘𝐾)‘𝑆) = ((𝐷‘𝐾)‘𝑆) | |
| 12 | 1, 2, 7, 8, 9, 10, 11 | dssmapfv3d 44117 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 13 | 6, 12 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 14 | 13 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))))) |
| 15 | ntrcls.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | eldif 3907 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆))))) |
| 18 | 15, 17 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 19 | 14, 18 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 𝒫 cpw 4549 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 |
| This theorem is referenced by: ntrclselnel2 44156 clsneiel1 44206 neicvgel1 44217 |
| Copyright terms: Public domain | W3C validator |