Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclselnel1 Structured version   Visualization version   GIF version

Theorem ntrclselnel1 44048
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrcls.x (𝜑𝑋𝐵)
ntrcls.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclselnel1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrclselnel1
StepHypRef Expression
1 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . . 7 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsfv2 44047 . . . . . 6 (𝜑 → (𝐷𝐾) = 𝐼)
54eqcomd 2742 . . . . 5 (𝜑𝐼 = (𝐷𝐾))
65fveq1d 6883 . . . 4 (𝜑 → (𝐼𝑆) = ((𝐷𝐾)‘𝑆))
72, 3ntrclsbex 44025 . . . . 5 (𝜑𝐵 ∈ V)
81, 2, 3ntrclskex 44045 . . . . 5 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
9 eqid 2736 . . . . 5 (𝐷𝐾) = (𝐷𝐾)
10 ntrcls.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
11 eqid 2736 . . . . 5 ((𝐷𝐾)‘𝑆) = ((𝐷𝐾)‘𝑆)
121, 2, 7, 8, 9, 10, 11dssmapfv3d 44010 . . . 4 (𝜑 → ((𝐷𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
136, 12eqtrd 2771 . . 3 (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
1413eleq2d 2821 . 2 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆)))))
15 ntrcls.x . . 3 (𝜑𝑋𝐵)
16 eldif 3941 . . . 4 (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
1716a1i 11 . . 3 (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆)))))
1815, 17mpbirand 707 . 2 (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
1914, 18bitrd 279 1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  𝒫 cpw 4580   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847
This theorem is referenced by:  ntrclselnel2  44049  clsneiel1  44099  neicvgel1  44110
  Copyright terms: Public domain W3C validator