| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclselnel1 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| ntrcls.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ntrcls.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| ntrclselnel1 | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 2 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | ntrcls.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 4 | 1, 2, 3 | ntrclsfv2 44049 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐾) = 𝐼) |
| 5 | 4 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → 𝐼 = (𝐷‘𝐾)) |
| 6 | 5 | fveq1d 6824 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) = ((𝐷‘𝐾)‘𝑆)) |
| 7 | 2, 3 | ntrclsbex 44027 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 8 | 1, 2, 3 | ntrclskex 44047 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 9 | eqid 2729 | . . . . 5 ⊢ (𝐷‘𝐾) = (𝐷‘𝐾) | |
| 10 | ntrcls.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 11 | eqid 2729 | . . . . 5 ⊢ ((𝐷‘𝐾)‘𝑆) = ((𝐷‘𝐾)‘𝑆) | |
| 12 | 1, 2, 7, 8, 9, 10, 11 | dssmapfv3d 44012 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 13 | 6, 12 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 14 | 13 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))))) |
| 15 | ntrcls.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | eldif 3913 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆))))) |
| 18 | 15, 17 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 19 | 14, 18 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∖ cdif 3900 𝒫 cpw 4551 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 |
| This theorem is referenced by: ntrclselnel2 44051 clsneiel1 44101 neicvgel1 44112 |
| Copyright terms: Public domain | W3C validator |