Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclselnel1 Structured version   Visualization version   GIF version

Theorem ntrclselnel1 41556
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrcls.x (𝜑𝑋𝐵)
ntrcls.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclselnel1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrclselnel1
StepHypRef Expression
1 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . . 7 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsfv2 41555 . . . . . 6 (𝜑 → (𝐷𝐾) = 𝐼)
54eqcomd 2744 . . . . 5 (𝜑𝐼 = (𝐷𝐾))
65fveq1d 6758 . . . 4 (𝜑 → (𝐼𝑆) = ((𝐷𝐾)‘𝑆))
72, 3ntrclsbex 41533 . . . . 5 (𝜑𝐵 ∈ V)
81, 2, 3ntrclskex 41553 . . . . 5 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
9 eqid 2738 . . . . 5 (𝐷𝐾) = (𝐷𝐾)
10 ntrcls.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
11 eqid 2738 . . . . 5 ((𝐷𝐾)‘𝑆) = ((𝐷𝐾)‘𝑆)
121, 2, 7, 8, 9, 10, 11dssmapfv3d 41516 . . . 4 (𝜑 → ((𝐷𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
136, 12eqtrd 2778 . . 3 (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
1413eleq2d 2824 . 2 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆)))))
15 ntrcls.x . . 3 (𝜑𝑋𝐵)
16 eldif 3893 . . . 4 (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
1716a1i 11 . . 3 (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆)))))
1815, 17mpbirand 703 . 2 (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
1914, 18bitrd 278 1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by:  ntrclselnel2  41557  clsneiel1  41607  neicvgel1  41618
  Copyright terms: Public domain W3C validator