| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclselnel1 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| ntrcls.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ntrcls.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| ntrclselnel1 | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 2 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | ntrcls.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 4 | 1, 2, 3 | ntrclsfv2 44069 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐾) = 𝐼) |
| 5 | 4 | eqcomd 2743 | . . . . 5 ⊢ (𝜑 → 𝐼 = (𝐷‘𝐾)) |
| 6 | 5 | fveq1d 6908 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) = ((𝐷‘𝐾)‘𝑆)) |
| 7 | 2, 3 | ntrclsbex 44047 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 8 | 1, 2, 3 | ntrclskex 44067 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 9 | eqid 2737 | . . . . 5 ⊢ (𝐷‘𝐾) = (𝐷‘𝐾) | |
| 10 | ntrcls.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 11 | eqid 2737 | . . . . 5 ⊢ ((𝐷‘𝐾)‘𝑆) = ((𝐷‘𝐾)‘𝑆) | |
| 12 | 1, 2, 7, 8, 9, 10, 11 | dssmapfv3d 44032 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 13 | 6, 12 | eqtrd 2777 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 14 | 13 | eleq2d 2827 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))))) |
| 15 | ntrcls.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | eldif 3961 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆))))) |
| 18 | 15, 17 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 19 | 14, 18 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 𝒫 cpw 4600 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 |
| This theorem is referenced by: ntrclselnel2 44071 clsneiel1 44121 neicvgel1 44132 |
| Copyright terms: Public domain | W3C validator |