Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclselnel1 Structured version   Visualization version   GIF version

Theorem ntrclselnel1 43111
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrcls.x (𝜑𝑋𝐵)
ntrcls.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclselnel1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrclselnel1
StepHypRef Expression
1 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . . 7 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsfv2 43110 . . . . . 6 (𝜑 → (𝐷𝐾) = 𝐼)
54eqcomd 2737 . . . . 5 (𝜑𝐼 = (𝐷𝐾))
65fveq1d 6894 . . . 4 (𝜑 → (𝐼𝑆) = ((𝐷𝐾)‘𝑆))
72, 3ntrclsbex 43088 . . . . 5 (𝜑𝐵 ∈ V)
81, 2, 3ntrclskex 43108 . . . . 5 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
9 eqid 2731 . . . . 5 (𝐷𝐾) = (𝐷𝐾)
10 ntrcls.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
11 eqid 2731 . . . . 5 ((𝐷𝐾)‘𝑆) = ((𝐷𝐾)‘𝑆)
121, 2, 7, 8, 9, 10, 11dssmapfv3d 43073 . . . 4 (𝜑 → ((𝐷𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
136, 12eqtrd 2771 . . 3 (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
1413eleq2d 2818 . 2 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆)))))
15 ntrcls.x . . 3 (𝜑𝑋𝐵)
16 eldif 3959 . . . 4 (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
1716a1i 11 . . 3 (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆)))))
1815, 17mpbirand 704 . 2 (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
1914, 18bitrd 278 1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cdif 3946  𝒫 cpw 4603   class class class wbr 5149  cmpt 5232  cfv 6544  (class class class)co 7412  m cmap 8823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-map 8825
This theorem is referenced by:  ntrclselnel2  43112  clsneiel1  43162  neicvgel1  43173
  Copyright terms: Public domain W3C validator