| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclselnel1 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| ntrcls.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ntrcls.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| ntrclselnel1 | ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 2 | ntrcls.d | . . . . . . 7 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | ntrcls.r | . . . . . . 7 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 4 | 1, 2, 3 | ntrclsfv2 44047 | . . . . . 6 ⊢ (𝜑 → (𝐷‘𝐾) = 𝐼) |
| 5 | 4 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → 𝐼 = (𝐷‘𝐾)) |
| 6 | 5 | fveq1d 6883 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑆) = ((𝐷‘𝐾)‘𝑆)) |
| 7 | 2, 3 | ntrclsbex 44025 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 8 | 1, 2, 3 | ntrclskex 44045 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 9 | eqid 2736 | . . . . 5 ⊢ (𝐷‘𝐾) = (𝐷‘𝐾) | |
| 10 | ntrcls.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 11 | eqid 2736 | . . . . 5 ⊢ ((𝐷‘𝐾)‘𝑆) = ((𝐷‘𝐾)‘𝑆) | |
| 12 | 1, 2, 7, 8, 9, 10, 11 | dssmapfv3d 44010 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 13 | 6, 12 | eqtrd 2771 | . . 3 ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 14 | 13 | eleq2d 2821 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))))) |
| 15 | ntrcls.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | eldif 3941 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆))))) |
| 18 | 15, 17 | mpbirand 707 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| 19 | 14, 18 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 𝒫 cpw 4580 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 |
| This theorem is referenced by: ntrclselnel2 44049 clsneiel1 44099 neicvgel1 44110 |
| Copyright terms: Public domain | W3C validator |