Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclselnel1 Structured version   Visualization version   GIF version

Theorem ntrclselnel1 41691
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrcls.x (𝜑𝑋𝐵)
ntrcls.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
ntrclselnel1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑗,𝐾,𝑘   𝑆,𝑗   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑘)   𝐼(𝑖,𝑗,𝑘)   𝐾(𝑖)   𝑂(𝑖,𝑗,𝑘)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrclselnel1
StepHypRef Expression
1 ntrcls.o . . . . . . 7 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
2 ntrcls.d . . . . . . 7 𝐷 = (𝑂𝐵)
3 ntrcls.r . . . . . . 7 (𝜑𝐼𝐷𝐾)
41, 2, 3ntrclsfv2 41690 . . . . . 6 (𝜑 → (𝐷𝐾) = 𝐼)
54eqcomd 2739 . . . . 5 (𝜑𝐼 = (𝐷𝐾))
65fveq1d 6794 . . . 4 (𝜑 → (𝐼𝑆) = ((𝐷𝐾)‘𝑆))
72, 3ntrclsbex 41668 . . . . 5 (𝜑𝐵 ∈ V)
81, 2, 3ntrclskex 41688 . . . . 5 (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
9 eqid 2733 . . . . 5 (𝐷𝐾) = (𝐷𝐾)
10 ntrcls.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
11 eqid 2733 . . . . 5 ((𝐷𝐾)‘𝑆) = ((𝐷𝐾)‘𝑆)
121, 2, 7, 8, 9, 10, 11dssmapfv3d 41651 . . . 4 (𝜑 → ((𝐷𝐾)‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
136, 12eqtrd 2773 . . 3 (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
1413eleq2d 2819 . 2 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆)))))
15 ntrcls.x . . 3 (𝜑𝑋𝐵)
16 eldif 3899 . . . 4 (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
1716a1i 11 . . 3 (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ (𝑋𝐵 ∧ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆)))))
1815, 17mpbirand 703 . 2 (𝜑 → (𝑋 ∈ (𝐵 ∖ (𝐾‘(𝐵𝑆))) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
1914, 18bitrd 278 1 (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1537  wcel 2101  Vcvv 3434  cdif 3886  𝒫 cpw 4536   class class class wbr 5077  cmpt 5160  cfv 6447  (class class class)co 7295  m cmap 8635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-1st 7851  df-2nd 7852  df-map 8637
This theorem is referenced by:  ntrclselnel2  41692  clsneiel1  41742  neicvgel1  41753
  Copyright terms: Public domain W3C validator