| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw5N | Structured version Visualization version GIF version | ||
| Description: The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 31592 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| omllaw5.b | ⊢ 𝐵 = (Base‘𝐾) |
| omllaw5.j | ⊢ ∨ = (join‘𝐾) |
| omllaw5.m | ⊢ ∧ = (meet‘𝐾) |
| omllaw5.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| omllaw5N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ (𝑋 ∨ 𝑌))) = (𝑋 ∨ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OML) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 3 | omllat 39228 | . . . 4 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | |
| 4 | omllaw5.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | omllaw5.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 6 | 4, 5 | latjcl 18380 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 7 | 3, 6 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 8 | 1, 2, 7 | 3jca 1128 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵)) |
| 9 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | 4, 9, 5 | latlej1 18389 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑌)) |
| 11 | 3, 10 | syl3an1 1163 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 𝑌)) |
| 12 | omllaw5.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 13 | omllaw5.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 14 | 4, 9, 5, 12, 13 | omllaw2N 39230 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵) → (𝑋(le‘𝐾)(𝑋 ∨ 𝑌) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ (𝑋 ∨ 𝑌))) = (𝑋 ∨ 𝑌))) |
| 15 | 8, 11, 14 | sylc 65 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ (𝑋 ∨ 𝑌))) = (𝑋 ∨ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 occoc 17204 joincjn 18252 meetcmee 18253 Latclat 18372 OMLcoml 39161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-lat 18373 df-oposet 39162 df-ol 39164 df-oml 39165 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |