Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtidN Structured version   Visualization version   GIF version

Theorem cmtidN 38729
Description: Any element commutes with itself. (cmidi 31433 analog.) (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtid.b 𝐡 = (Baseβ€˜πΎ)
cmtid.c 𝐢 = (cmβ€˜πΎ)
Assertion
Ref Expression
cmtidN ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐡) β†’ 𝑋𝐢𝑋)

Proof of Theorem cmtidN
StepHypRef Expression
1 omllat 38714 . . 3 (𝐾 ∈ OML β†’ 𝐾 ∈ Lat)
2 cmtid.b . . . 4 𝐡 = (Baseβ€˜πΎ)
3 eqid 2728 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
42, 3latref 18433 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡) β†’ 𝑋(leβ€˜πΎ)𝑋)
51, 4sylan 579 . 2 ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐡) β†’ 𝑋(leβ€˜πΎ)𝑋)
6 cmtid.c . . . 4 𝐢 = (cmβ€˜πΎ)
72, 3, 6lecmtN 38728 . . 3 ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (𝑋(leβ€˜πΎ)𝑋 β†’ 𝑋𝐢𝑋))
873anidm23 1419 . 2 ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐡) β†’ (𝑋(leβ€˜πΎ)𝑋 β†’ 𝑋𝐢𝑋))
95, 8mpd 15 1 ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐡) β†’ 𝑋𝐢𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   class class class wbr 5148  β€˜cfv 6548  Basecbs 17180  lecple 17240  Latclat 18423  cmccmtN 38645  OMLcoml 38647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-proset 18287  df-poset 18305  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-lat 18424  df-oposet 38648  df-cmtN 38649  df-ol 38650  df-oml 38651
This theorem is referenced by:  omlspjN  38733
  Copyright terms: Public domain W3C validator