![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmtidN | Structured version Visualization version GIF version |
Description: Any element commutes with itself. (cmidi 31368 analog.) (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cmtid.b | β’ π΅ = (BaseβπΎ) |
cmtid.c | β’ πΆ = (cmβπΎ) |
Ref | Expression |
---|---|
cmtidN | β’ ((πΎ β OML β§ π β π΅) β ππΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omllat 38623 | . . 3 β’ (πΎ β OML β πΎ β Lat) | |
2 | cmtid.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
3 | eqid 2726 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
4 | 2, 3 | latref 18404 | . . 3 β’ ((πΎ β Lat β§ π β π΅) β π(leβπΎ)π) |
5 | 1, 4 | sylan 579 | . 2 β’ ((πΎ β OML β§ π β π΅) β π(leβπΎ)π) |
6 | cmtid.c | . . . 4 β’ πΆ = (cmβπΎ) | |
7 | 2, 3, 6 | lecmtN 38637 | . . 3 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β ππΆπ)) |
8 | 7 | 3anidm23 1418 | . 2 β’ ((πΎ β OML β§ π β π΅) β (π(leβπΎ)π β ππΆπ)) |
9 | 5, 8 | mpd 15 | 1 β’ ((πΎ β OML β§ π β π΅) β ππΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 class class class wbr 5141 βcfv 6536 Basecbs 17151 lecple 17211 Latclat 18394 cmccmtN 38554 OMLcoml 38556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-proset 18258 df-poset 18276 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-lat 18395 df-oposet 38557 df-cmtN 38558 df-ol 38559 df-oml 38560 |
This theorem is referenced by: omlspjN 38642 |
Copyright terms: Public domain | W3C validator |