Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlmod1i2N Structured version   Visualization version   GIF version

Theorem omlmod1i2N 39298
Description: Analogue of modular law atmod1i2 39897 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlmod.b 𝐵 = (Base‘𝐾)
omlmod.l = (le‘𝐾)
omlmod.j = (join‘𝐾)
omlmod.m = (meet‘𝐾)
omlmod.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlmod1i2N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) 𝑍))

Proof of Theorem omlmod1i2N
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝐾 ∈ OML)
2 simp23 1209 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐵)
3 simp21 1207 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋𝐵)
4 simp22 1208 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑌𝐵)
5 simp3l 1202 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋 𝑍)
6 omlmod.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 omlmod.l . . . . . . 7 = (le‘𝐾)
8 omlmod.c . . . . . . 7 𝐶 = (cm‘𝐾)
96, 7, 8lecmtN 39294 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍𝑋𝐶𝑍))
101, 3, 2, 9syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑍𝑋𝐶𝑍))
115, 10mpd 15 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋𝐶𝑍)
126, 8cmtcomN 39287 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍𝑍𝐶𝑋))
131, 3, 2, 12syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋𝐶𝑍𝑍𝐶𝑋))
1411, 13mpbid 232 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐶𝑋)
15 simp3r 1203 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑌𝐶𝑍)
166, 8cmtcomN 39287 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑍𝐵) → (𝑌𝐶𝑍𝑍𝐶𝑌))
171, 4, 2, 16syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑌𝐶𝑍𝑍𝐶𝑌))
1815, 17mpbid 232 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐶𝑌)
19 omlmod.j . . . 4 = (join‘𝐾)
20 omlmod.m . . . 4 = (meet‘𝐾)
216, 19, 20, 8omlfh1N 39296 . . 3 ((𝐾 ∈ OML ∧ (𝑍𝐵𝑋𝐵𝑌𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑍 (𝑋 𝑌)) = ((𝑍 𝑋) (𝑍 𝑌)))
221, 2, 3, 4, 14, 18, 21syl132anc 1390 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 (𝑋 𝑌)) = ((𝑍 𝑋) (𝑍 𝑌)))
23 omllat 39280 . . . 4 (𝐾 ∈ OML → 𝐾 ∈ Lat)
24233ad2ant1 1133 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝐾 ∈ Lat)
256, 19latjcl 18342 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2624, 3, 4, 25syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑌) ∈ 𝐵)
276, 20latmcom 18366 . . 3 ((𝐾 ∈ Lat ∧ 𝑍𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑍 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑍))
2824, 2, 26, 27syl3anc 1373 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑍))
296, 7, 20latleeqm2 18371 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍 ↔ (𝑍 𝑋) = 𝑋))
3024, 3, 2, 29syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑍 ↔ (𝑍 𝑋) = 𝑋))
315, 30mpbid 232 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 𝑋) = 𝑋)
326, 20latmcom 18366 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) = (𝑌 𝑍))
3324, 2, 4, 32syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 𝑌) = (𝑌 𝑍))
3431, 33oveq12d 7364 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → ((𝑍 𝑋) (𝑍 𝑌)) = (𝑋 (𝑌 𝑍)))
3522, 28, 343eqtr3rd 2775 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  joincjn 18214  meetcmee 18215  Latclat 18334  cmccmtN 39211  OMLcoml 39213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18197  df-poset 18216  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-lat 18335  df-oposet 39214  df-cmtN 39215  df-ol 39216  df-oml 39217
This theorem is referenced by:  omlspjN  39299
  Copyright terms: Public domain W3C validator