Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlmod1i2N Structured version   Visualization version   GIF version

Theorem omlmod1i2N 39260
Description: Analogue of modular law atmod1i2 39860 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlmod.b 𝐵 = (Base‘𝐾)
omlmod.l = (le‘𝐾)
omlmod.j = (join‘𝐾)
omlmod.m = (meet‘𝐾)
omlmod.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlmod1i2N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) 𝑍))

Proof of Theorem omlmod1i2N
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝐾 ∈ OML)
2 simp23 1209 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐵)
3 simp21 1207 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋𝐵)
4 simp22 1208 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑌𝐵)
5 simp3l 1202 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋 𝑍)
6 omlmod.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 omlmod.l . . . . . . 7 = (le‘𝐾)
8 omlmod.c . . . . . . 7 𝐶 = (cm‘𝐾)
96, 7, 8lecmtN 39256 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍𝑋𝐶𝑍))
101, 3, 2, 9syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑍𝑋𝐶𝑍))
115, 10mpd 15 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋𝐶𝑍)
126, 8cmtcomN 39249 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍𝑍𝐶𝑋))
131, 3, 2, 12syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋𝐶𝑍𝑍𝐶𝑋))
1411, 13mpbid 232 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐶𝑋)
15 simp3r 1203 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑌𝐶𝑍)
166, 8cmtcomN 39249 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑍𝐵) → (𝑌𝐶𝑍𝑍𝐶𝑌))
171, 4, 2, 16syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑌𝐶𝑍𝑍𝐶𝑌))
1815, 17mpbid 232 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐶𝑌)
19 omlmod.j . . . 4 = (join‘𝐾)
20 omlmod.m . . . 4 = (meet‘𝐾)
216, 19, 20, 8omlfh1N 39258 . . 3 ((𝐾 ∈ OML ∧ (𝑍𝐵𝑋𝐵𝑌𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑍 (𝑋 𝑌)) = ((𝑍 𝑋) (𝑍 𝑌)))
221, 2, 3, 4, 14, 18, 21syl132anc 1390 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 (𝑋 𝑌)) = ((𝑍 𝑋) (𝑍 𝑌)))
23 omllat 39242 . . . 4 (𝐾 ∈ OML → 𝐾 ∈ Lat)
24233ad2ant1 1133 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝐾 ∈ Lat)
256, 19latjcl 18405 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2624, 3, 4, 25syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑌) ∈ 𝐵)
276, 20latmcom 18429 . . 3 ((𝐾 ∈ Lat ∧ 𝑍𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑍 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑍))
2824, 2, 26, 27syl3anc 1373 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑍))
296, 7, 20latleeqm2 18434 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍 ↔ (𝑍 𝑋) = 𝑋))
3024, 3, 2, 29syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑍 ↔ (𝑍 𝑋) = 𝑋))
315, 30mpbid 232 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 𝑋) = 𝑋)
326, 20latmcom 18429 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) = (𝑌 𝑍))
3324, 2, 4, 32syl3anc 1373 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 𝑌) = (𝑌 𝑍))
3431, 33oveq12d 7408 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → ((𝑍 𝑋) (𝑍 𝑌)) = (𝑋 (𝑌 𝑍)))
3522, 28, 343eqtr3rd 2774 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  Latclat 18397  cmccmtN 39173  OMLcoml 39175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-oposet 39176  df-cmtN 39177  df-ol 39178  df-oml 39179
This theorem is referenced by:  omlspjN  39261
  Copyright terms: Public domain W3C validator