Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlmod1i2N Structured version   Visualization version   GIF version

Theorem omlmod1i2N 37253
Description: Analogue of modular law atmod1i2 37852 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlmod.b 𝐵 = (Base‘𝐾)
omlmod.l = (le‘𝐾)
omlmod.j = (join‘𝐾)
omlmod.m = (meet‘𝐾)
omlmod.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlmod1i2N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) 𝑍))

Proof of Theorem omlmod1i2N
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝐾 ∈ OML)
2 simp23 1206 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐵)
3 simp21 1204 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋𝐵)
4 simp22 1205 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑌𝐵)
5 simp3l 1199 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋 𝑍)
6 omlmod.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 omlmod.l . . . . . . 7 = (le‘𝐾)
8 omlmod.c . . . . . . 7 𝐶 = (cm‘𝐾)
96, 7, 8lecmtN 37249 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍𝑋𝐶𝑍))
101, 3, 2, 9syl3anc 1369 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑍𝑋𝐶𝑍))
115, 10mpd 15 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋𝐶𝑍)
126, 8cmtcomN 37242 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍𝑍𝐶𝑋))
131, 3, 2, 12syl3anc 1369 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋𝐶𝑍𝑍𝐶𝑋))
1411, 13mpbid 231 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐶𝑋)
15 simp3r 1200 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑌𝐶𝑍)
166, 8cmtcomN 37242 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑍𝐵) → (𝑌𝐶𝑍𝑍𝐶𝑌))
171, 4, 2, 16syl3anc 1369 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑌𝐶𝑍𝑍𝐶𝑌))
1815, 17mpbid 231 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐶𝑌)
19 omlmod.j . . . 4 = (join‘𝐾)
20 omlmod.m . . . 4 = (meet‘𝐾)
216, 19, 20, 8omlfh1N 37251 . . 3 ((𝐾 ∈ OML ∧ (𝑍𝐵𝑋𝐵𝑌𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑍 (𝑋 𝑌)) = ((𝑍 𝑋) (𝑍 𝑌)))
221, 2, 3, 4, 14, 18, 21syl132anc 1386 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 (𝑋 𝑌)) = ((𝑍 𝑋) (𝑍 𝑌)))
23 omllat 37235 . . . 4 (𝐾 ∈ OML → 𝐾 ∈ Lat)
24233ad2ant1 1131 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝐾 ∈ Lat)
256, 19latjcl 18138 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2624, 3, 4, 25syl3anc 1369 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑌) ∈ 𝐵)
276, 20latmcom 18162 . . 3 ((𝐾 ∈ Lat ∧ 𝑍𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑍 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑍))
2824, 2, 26, 27syl3anc 1369 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑍))
296, 7, 20latleeqm2 18167 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍 ↔ (𝑍 𝑋) = 𝑋))
3024, 3, 2, 29syl3anc 1369 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑍 ↔ (𝑍 𝑋) = 𝑋))
315, 30mpbid 231 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 𝑋) = 𝑋)
326, 20latmcom 18162 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) = (𝑌 𝑍))
3324, 2, 4, 32syl3anc 1369 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 𝑌) = (𝑌 𝑍))
3431, 33oveq12d 7286 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → ((𝑍 𝑋) (𝑍 𝑌)) = (𝑋 (𝑌 𝑍)))
3522, 28, 343eqtr3rd 2788 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  lecple 16950  joincjn 18010  meetcmee 18011  Latclat 18130  cmccmtN 37166  OMLcoml 37168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-proset 17994  df-poset 18012  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-lat 18131  df-oposet 37169  df-cmtN 37170  df-ol 37171  df-oml 37172
This theorem is referenced by:  omlspjN  37254
  Copyright terms: Public domain W3C validator