Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlmod1i2N Structured version   Visualization version   GIF version

Theorem omlmod1i2N 36556
Description: Analogue of modular law atmod1i2 37155 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlmod.b 𝐵 = (Base‘𝐾)
omlmod.l = (le‘𝐾)
omlmod.j = (join‘𝐾)
omlmod.m = (meet‘𝐾)
omlmod.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlmod1i2N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) 𝑍))

Proof of Theorem omlmod1i2N
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝐾 ∈ OML)
2 simp23 1205 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐵)
3 simp21 1203 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋𝐵)
4 simp22 1204 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑌𝐵)
5 simp3l 1198 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋 𝑍)
6 omlmod.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 omlmod.l . . . . . . 7 = (le‘𝐾)
8 omlmod.c . . . . . . 7 𝐶 = (cm‘𝐾)
96, 7, 8lecmtN 36552 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍𝑋𝐶𝑍))
101, 3, 2, 9syl3anc 1368 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑍𝑋𝐶𝑍))
115, 10mpd 15 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑋𝐶𝑍)
126, 8cmtcomN 36545 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍𝑍𝐶𝑋))
131, 3, 2, 12syl3anc 1368 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋𝐶𝑍𝑍𝐶𝑋))
1411, 13mpbid 235 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐶𝑋)
15 simp3r 1199 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑌𝐶𝑍)
166, 8cmtcomN 36545 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑍𝐵) → (𝑌𝐶𝑍𝑍𝐶𝑌))
171, 4, 2, 16syl3anc 1368 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑌𝐶𝑍𝑍𝐶𝑌))
1815, 17mpbid 235 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝑍𝐶𝑌)
19 omlmod.j . . . 4 = (join‘𝐾)
20 omlmod.m . . . 4 = (meet‘𝐾)
216, 19, 20, 8omlfh1N 36554 . . 3 ((𝐾 ∈ OML ∧ (𝑍𝐵𝑋𝐵𝑌𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑍 (𝑋 𝑌)) = ((𝑍 𝑋) (𝑍 𝑌)))
221, 2, 3, 4, 14, 18, 21syl132anc 1385 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 (𝑋 𝑌)) = ((𝑍 𝑋) (𝑍 𝑌)))
23 omllat 36538 . . . 4 (𝐾 ∈ OML → 𝐾 ∈ Lat)
24233ad2ant1 1130 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → 𝐾 ∈ Lat)
256, 19latjcl 17653 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2624, 3, 4, 25syl3anc 1368 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑌) ∈ 𝐵)
276, 20latmcom 17677 . . 3 ((𝐾 ∈ Lat ∧ 𝑍𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑍 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑍))
2824, 2, 26, 27syl3anc 1368 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑍))
296, 7, 20latleeqm2 17682 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍 ↔ (𝑍 𝑋) = 𝑋))
3024, 3, 2, 29syl3anc 1368 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 𝑍 ↔ (𝑍 𝑋) = 𝑋))
315, 30mpbid 235 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 𝑋) = 𝑋)
326, 20latmcom 17677 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) = (𝑌 𝑍))
3324, 2, 4, 32syl3anc 1368 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑍 𝑌) = (𝑌 𝑍))
3431, 33oveq12d 7153 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → ((𝑍 𝑋) (𝑍 𝑌)) = (𝑋 (𝑌 𝑍)))
3522, 28, 343eqtr3rd 2842 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑍𝑌𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Latclat 17647  cmccmtN 36469  OMLcoml 36471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-oposet 36472  df-cmtN 36473  df-ol 36474  df-oml 36475
This theorem is referenced by:  omlspjN  36557
  Copyright terms: Public domain W3C validator