| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssonuni | Structured version Visualization version GIF version | ||
| Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 1-Nov-2003.) |
| Ref | Expression |
|---|---|
| ssonuni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssorduni 7712 | . 2 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 2 | uniexg 7673 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 3 | elong 6314 | . . 3 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴)) |
| 5 | 1, 4 | imbitrrid 246 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ∪ cuni 4859 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: ssonunii 7714 onuni 7721 iunon 8259 onfununi 8261 oemapvali 9574 cardprclem 9869 carduni 9871 dfac12lem2 10033 ontgval 36464 onsupcl2 43257 onuniintrab 43258 onsupuni 43261 onsupcl3 43265 cantnfub2 43354 |
| Copyright terms: Public domain | W3C validator |