MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonuni Structured version   Visualization version   GIF version

Theorem ssonuni 7719
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
ssonuni (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))

Proof of Theorem ssonuni
StepHypRef Expression
1 ssorduni 7718 . 2 (𝐴 ⊆ On → Ord 𝐴)
2 uniexg 7679 . . 3 (𝐴𝑉 𝐴 ∈ V)
3 elong 6319 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
42, 3syl 17 . 2 (𝐴𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴))
51, 4imbitrrid 246 1 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2113  Vcvv 3437  wss 3898   cuni 4858  Ord word 6310  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315
This theorem is referenced by:  ssonunii  7720  onuni  7727  iunon  8265  onfununi  8267  oemapvali  9581  cardprclem  9879  carduni  9881  dfac12lem2  10043  ontgval  36496  onsupcl2  43342  onuniintrab  43343  onsupuni  43346  onsupcl3  43350  cantnfub2  43439
  Copyright terms: Public domain W3C validator