MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonuni Structured version   Visualization version   GIF version

Theorem ssonuni 7713
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. Lemma 2.7 of [Schloeder] p. 4. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
ssonuni (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))

Proof of Theorem ssonuni
StepHypRef Expression
1 ssorduni 7712 . 2 (𝐴 ⊆ On → Ord 𝐴)
2 uniexg 7673 . . 3 (𝐴𝑉 𝐴 ∈ V)
3 elong 6314 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴))
42, 3syl 17 . 2 (𝐴𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴))
51, 4imbitrrid 246 1 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  Vcvv 3436  wss 3902   cuni 4859  Ord word 6305  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310
This theorem is referenced by:  ssonunii  7714  onuni  7721  iunon  8259  onfununi  8261  oemapvali  9574  cardprclem  9869  carduni  9871  dfac12lem2  10033  ontgval  36464  onsupcl2  43257  onuniintrab  43258  onsupuni  43261  onsupcl3  43265  cantnfub2  43354
  Copyright terms: Public domain W3C validator