MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuniorsuciOLD Structured version   Visualization version   GIF version

Theorem onuniorsuciOLD 7837
Description: Obsolete version of onuniorsuc 7834 as of 11-Jan-2025. (Contributed by NM, 13-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onuniorsuciOLD (𝐴 = 𝐴𝐴 = suc 𝐴)

Proof of Theorem onuniorsuciOLD
StepHypRef Expression
1 onssi.1 . 2 𝐴 ∈ On
2 onuniorsuc 7834 . 2 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
31, 2ax-mp 5 1 (𝐴 = 𝐴𝐴 = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1534  wcel 2099   cuni 4903  Oncon0 6363  suc csuc 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-tr 5260  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-ord 6366  df-on 6367  df-suc 6369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator