MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuniorsuciOLD Structured version   Visualization version   GIF version

Theorem onuniorsuciOLD 7828
Description: Obsolete version of onuniorsuc 7825 as of 11-Jan-2025. (Contributed by NM, 13-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onuniorsuciOLD (𝐴 = 𝐴𝐴 = suc 𝐴)

Proof of Theorem onuniorsuciOLD
StepHypRef Expression
1 onssi.1 . 2 𝐴 ∈ On
2 onuniorsuc 7825 . 2 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
31, 2ax-mp 5 1 (𝐴 = 𝐴𝐴 = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1542  wcel 2107   cuni 4909  Oncon0 6365  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-suc 6371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator