Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onsuci | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onsuci | ⊢ suc 𝐴 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | suceloni 7614 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 Oncon0 6234 suc csuc 6236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-11 2160 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5179 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-ord 6237 df-on 6238 df-suc 6240 |
This theorem is referenced by: 1on 8233 2on 8234 3on 8236 4on 8237 tz9.12lem2 9434 tz9.12 9436 rankpwi 9469 bndrank 9487 rankval4 9513 rankmapu 9524 rankxplim3 9527 cfcof 9918 ttukeylem6 10158 onsucconni 34397 onsucsuccmpi 34403 |
Copyright terms: Public domain | W3C validator |