MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsuci Structured version   Visualization version   GIF version

Theorem onsuci 7875
Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 7847 and onsucb 7853. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onsuci suc 𝐴 ∈ On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2 𝐴 ∈ On
2 onsuc 7847 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
31, 2ax-mp 5 1 suc 𝐴 ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  1onOLD  8535  2onOLD  8537  3on  8540  4on  8541  tz9.12lem2  9857  tz9.12  9859  rankpwi  9892  bndrank  9910  rankval4  9936  rankmapu  9947  rankxplim3  9950  cfcof  10343  ttukeylem6  10583  n0sbday  28372  pw2bday  28436  onsucconni  36403  onsucsuccmpi  36409
  Copyright terms: Public domain W3C validator