MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsuci Structured version   Visualization version   GIF version

Theorem onsuci 7273
Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onsuci suc 𝐴 ∈ On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2 𝐴 ∈ On
2 suceloni 7248 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
31, 2ax-mp 5 1 suc 𝐴 ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2157  Oncon0 5942  suc csuc 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098  ax-un 7184
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-tr 4947  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-ord 5945  df-on 5946  df-suc 5948
This theorem is referenced by:  1on  7807  2on  7809  3on  7811  4on  7812  tz9.12lem2  8902  tz9.12  8904  rankpwi  8937  bndrank  8955  rankval4  8981  rankmapu  8992  rankxplim3  8995  cfcof  9385  ttukeylem6  9625  onsucconni  32943  onsucsuccmpi  32949
  Copyright terms: Public domain W3C validator