| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsuci | Structured version Visualization version GIF version | ||
| Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 7805 and onsucb 7811. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
| Ref | Expression |
|---|---|
| onssi.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onsuci | ⊢ suc 𝐴 ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onssi.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onsuc 7805 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Oncon0 6352 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-suc 6358 |
| This theorem is referenced by: 1onOLD 8493 2onOLD 8495 3on 8498 4on 8499 tz9.12lem2 9802 tz9.12 9804 rankpwi 9837 bndrank 9855 rankval4 9881 rankmapu 9892 rankxplim3 9895 cfcof 10288 ttukeylem6 10528 n0sbday 28296 onsucconni 36455 onsucsuccmpi 36461 |
| Copyright terms: Public domain | W3C validator |