![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsuci | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 7847 and onsucb 7853. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onsuci | ⊢ suc 𝐴 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onsuc 7847 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Oncon0 6395 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: 1onOLD 8535 2onOLD 8537 3on 8540 4on 8541 tz9.12lem2 9857 tz9.12 9859 rankpwi 9892 bndrank 9910 rankval4 9936 rankmapu 9947 rankxplim3 9950 cfcof 10343 ttukeylem6 10583 n0sbday 28372 pw2bday 28436 onsucconni 36403 onsucsuccmpi 36409 |
Copyright terms: Public domain | W3C validator |