MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsuci Structured version   Visualization version   GIF version

Theorem onsuci 7639
Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onsuci suc 𝐴 ∈ On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2 𝐴 ∈ On
2 suceloni 7614 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
31, 2ax-mp 5 1 suc 𝐴 ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  Oncon0 6234  suc csuc 6236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-11 2160  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pr 5339  ax-un 7545
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5179  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-ord 6237  df-on 6238  df-suc 6240
This theorem is referenced by:  1on  8233  2on  8234  3on  8236  4on  8237  tz9.12lem2  9434  tz9.12  9436  rankpwi  9469  bndrank  9487  rankval4  9513  rankmapu  9524  rankxplim3  9527  cfcof  9918  ttukeylem6  10158  onsucconni  34397  onsucsuccmpi  34403
  Copyright terms: Public domain W3C validator