![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsuci | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 7820 and onsucb 7826. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
Ref | Expression |
---|---|
onssi.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onsuci | ⊢ suc 𝐴 ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onssi.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onsuc 7820 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Oncon0 6374 suc csuc 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 df-on 6378 df-suc 6380 |
This theorem is referenced by: 1onOLD 8506 2onOLD 8508 3on 8511 4on 8512 tz9.12lem2 9819 tz9.12 9821 rankpwi 9854 bndrank 9872 rankval4 9898 rankmapu 9909 rankxplim3 9912 cfcof 10305 ttukeylem6 10545 n0sbday 28237 onsucconni 35954 onsucsuccmpi 35960 |
Copyright terms: Public domain | W3C validator |