MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsuci Structured version   Visualization version   GIF version

Theorem onsuci 7772
Description: The successor of an ordinal number is an ordinal number. Inference associated with onsuc 7746 and onsucb 7750. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1 𝐴 ∈ On
Assertion
Ref Expression
onsuci suc 𝐴 ∈ On

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2 𝐴 ∈ On
2 onsuc 7746 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
31, 2ax-mp 5 1 suc 𝐴 ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Oncon0 6307  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-suc 6313
This theorem is referenced by:  3on  8404  4on  8405  tz9.12lem2  9684  tz9.12  9686  rankpwi  9719  bndrank  9737  rankval4  9763  rankmapu  9774  rankxplim3  9777  cfcof  10168  ttukeylem6  10408  bdayiun  27829  n0sbday  28249  onsucconni  36411  onsucsuccmpi  36417
  Copyright terms: Public domain W3C validator