MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuniorsuc Structured version   Visualization version   GIF version

Theorem onuniorsuc 7815
Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) Put in closed form. (Revised by BJ, 11-Jan-2025.)
Assertion
Ref Expression
onuniorsuc (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))

Proof of Theorem onuniorsuc
StepHypRef Expression
1 eloni 6345 . 2 (𝐴 ∈ On → Ord 𝐴)
2 orduniorsuc 7808 . 2 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
31, 2syl 17 1 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109   cuni 4874  Ord word 6334  Oncon0 6335  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-suc 6341
This theorem is referenced by:  onuniorsuciOLD  7818  onuninsuci  7819  onsucf1olem  43266
  Copyright terms: Public domain W3C validator