MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuniorsuc Structured version   Visualization version   GIF version

Theorem onuniorsuc 7873
Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) Put in closed form. (Revised by BJ, 11-Jan-2025.)
Assertion
Ref Expression
onuniorsuc (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))

Proof of Theorem onuniorsuc
StepHypRef Expression
1 eloni 6405 . 2 (𝐴 ∈ On → Ord 𝐴)
2 orduniorsuc 7866 . 2 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
31, 2syl 17 1 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1537  wcel 2108   cuni 4931  Ord word 6394  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  onuniorsuciOLD  7876  onuninsuci  7877  onsucf1olem  43232
  Copyright terms: Public domain W3C validator