MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuniorsuc Structured version   Visualization version   GIF version

Theorem onuniorsuc 7836
Description: An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) Put in closed form. (Revised by BJ, 11-Jan-2025.)
Assertion
Ref Expression
onuniorsuc (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))

Proof of Theorem onuniorsuc
StepHypRef Expression
1 eloni 6367 . 2 (𝐴 ∈ On → Ord 𝐴)
2 orduniorsuc 7829 . 2 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
31, 2syl 17 1 (𝐴 ∈ On → (𝐴 = 𝐴𝐴 = suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109   cuni 4888  Ord word 6356  Oncon0 6357  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-suc 6363
This theorem is referenced by:  onuniorsuciOLD  7839  onuninsuci  7840  onsucf1olem  43261
  Copyright terms: Public domain W3C validator