![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stval2 | Structured version Visualization version GIF version |
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
Ref | Expression |
---|---|
1stval2 | ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5750 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3478 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | op1st 7982 | . . . . 5 ⊢ (1st ‘⟨𝑥, 𝑦⟩) = 𝑥 |
5 | 2, 3 | op1stb 5471 | . . . . 5 ⊢ ∩ ∩ ⟨𝑥, 𝑦⟩ = 𝑥 |
6 | 4, 5 | eqtr4i 2763 | . . . 4 ⊢ (1st ‘⟨𝑥, 𝑦⟩) = ∩ ∩ ⟨𝑥, 𝑦⟩ |
7 | fveq2 6891 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = (1st ‘⟨𝑥, 𝑦⟩)) | |
8 | inteq 4953 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∩ 𝐴 = ∩ ⟨𝑥, 𝑦⟩) | |
9 | 8 | inteqd 4955 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∩ ∩ 𝐴 = ∩ ∩ ⟨𝑥, 𝑦⟩) |
10 | 6, 7, 9 | 3eqtr4a 2798 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = ∩ ∩ 𝐴) |
11 | 10 | exlimivv 1935 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (1st ‘𝐴) = ∩ ∩ 𝐴) |
12 | 1, 11 | sylbi 216 | 1 ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 ∩ cint 4950 × cxp 5674 ‘cfv 6543 1st c1st 7972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7974 |
This theorem is referenced by: 1stdm 8025 |
Copyright terms: Public domain | W3C validator |