MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval2 Structured version   Visualization version   GIF version

Theorem 1stval2 7706
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
1stval2 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)

Proof of Theorem 1stval2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5626 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 3497 . . . . . 6 𝑥 ∈ V
3 vex 3497 . . . . . 6 𝑦 ∈ V
42, 3op1st 7697 . . . . 5 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
52, 3op1stb 5363 . . . . 5 𝑥, 𝑦⟩ = 𝑥
64, 5eqtr4i 2847 . . . 4 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥, 𝑦
7 fveq2 6670 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = (1st ‘⟨𝑥, 𝑦⟩))
8 inteq 4879 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
98inteqd 4881 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
106, 7, 93eqtr4a 2882 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝐴)
1110exlimivv 1933 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝐴)
121, 11sylbi 219 1 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  cop 4573   cint 4876   × cxp 5553  cfv 6355  1st c1st 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fv 6363  df-1st 7689
This theorem is referenced by:  1stdm  7739
  Copyright terms: Public domain W3C validator