MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stval2 Structured version   Visualization version   GIF version

Theorem 1stval2 7985
Description: Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
1stval2 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)

Proof of Theorem 1stval2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5713 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 3451 . . . . . 6 𝑥 ∈ V
3 vex 3451 . . . . . 6 𝑦 ∈ V
42, 3op1st 7976 . . . . 5 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
52, 3op1stb 5431 . . . . 5 𝑥, 𝑦⟩ = 𝑥
64, 5eqtr4i 2755 . . . 4 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥, 𝑦
7 fveq2 6858 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = (1st ‘⟨𝑥, 𝑦⟩))
8 inteq 4913 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
98inteqd 4915 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
106, 7, 93eqtr4a 2790 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝐴)
1110exlimivv 1932 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝐴)
121, 11sylbi 217 1 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cop 4595   cint 4910   × cxp 5636  cfv 6511  1st c1st 7966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968
This theorem is referenced by:  1stdm  8019
  Copyright terms: Public domain W3C validator