![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f2ndres | Structured version Visualization version GIF version |
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f2ndres | ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3450 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
2 | vex 3450 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
3 | 1, 2 | op2nda 6181 | . . . . . . 7 ⊢ ∪ ran {⟨𝑦, 𝑧⟩} = 𝑧 |
4 | 3 | eleq1i 2829 | . . . . . 6 ⊢ (∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
5 | 4 | biimpri 227 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵) |
6 | 5 | adantl 483 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵) |
7 | 6 | rgen2 3195 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵 |
8 | sneq 4597 | . . . . . . 7 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩}) | |
9 | 8 | rneqd 5894 | . . . . . 6 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩}) |
10 | 9 | unieqd 4880 | . . . . 5 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ∪ ran {𝑥} = ∪ ran {⟨𝑦, 𝑧⟩}) |
11 | 10 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (∪ ran {𝑥} ∈ 𝐵 ↔ ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)) |
12 | 11 | ralxp 5798 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵) |
13 | 7, 12 | mpbir 230 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 |
14 | df-2nd 7923 | . . . . 5 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
15 | 14 | reseq1i 5934 | . . . 4 ⊢ (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) |
16 | ssv 3969 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
17 | resmpt 5992 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥})) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
19 | 15, 18 | eqtri 2765 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
20 | 19 | fmpt 7059 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵) |
21 | 13, 20 | mpbi 229 | 1 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∀wral 3065 Vcvv 3446 ⊆ wss 3911 {csn 4587 ⟨cop 4593 ∪ cuni 4866 ↦ cmpt 5189 × cxp 5632 ran crn 5635 ↾ cres 5636 ⟶wf 6493 2nd c2nd 7921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-fun 6499 df-fn 6500 df-f 6501 df-2nd 7923 |
This theorem is referenced by: fo2ndres 7949 2ndcof 7953 fparlem2 8046 f2ndf 8053 eucalgcvga 16463 2ndfcl 18087 gaid 19080 tx2cn 22964 txkgen 23006 xpinpreima 32490 xpinpreima2 32491 2ndmbfm 32864 filnetlem4 34856 hausgraph 41542 |
Copyright terms: Public domain | W3C validator |