MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f2ndres Structured version   Visualization version   GIF version

Theorem f2ndres 7570
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f2ndres (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵

Proof of Theorem f2ndres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . . 8 𝑦 ∈ V
2 vex 3440 . . . . . . . 8 𝑧 ∈ V
31, 2op2nda 5960 . . . . . . 7 ran {⟨𝑦, 𝑧⟩} = 𝑧
43eleq1i 2873 . . . . . 6 ( ran {⟨𝑦, 𝑧⟩} ∈ 𝐵𝑧𝐵)
54biimpri 229 . . . . 5 (𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
65adantl 482 . . . 4 ((𝑦𝐴𝑧𝐵) → ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
76rgen2 3170 . . 3 𝑦𝐴𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵
8 sneq 4482 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩})
98rneqd 5690 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩})
109unieqd 4755 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩})
1110eleq1d 2867 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ( ran {𝑥} ∈ 𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵))
1211ralxp 5598 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵 ↔ ∀𝑦𝐴𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
137, 12mpbir 232 . 2 𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵
14 df-2nd 7546 . . . . 5 2nd = (𝑥 ∈ V ↦ ran {𝑥})
1514reseq1i 5730 . . . 4 (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵))
16 ssv 3912 . . . . 5 (𝐴 × 𝐵) ⊆ V
17 resmpt 5786 . . . . 5 ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥}))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥})
1915, 18eqtri 2819 . . 3 (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥})
2019fmpt 6737 . 2 (∀𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵)
2113, 20mpbi 231 1 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1522  wcel 2081  wral 3105  Vcvv 3437  wss 3859  {csn 4472  cop 4478   cuni 4745  cmpt 5041   × cxp 5441  ran crn 5444  cres 5445  wf 6221  2nd c2nd 7544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-fv 6233  df-2nd 7546
This theorem is referenced by:  fo2ndres  7572  2ndcof  7576  fparlem2  7664  f2ndf  7669  eucalgcvga  15759  2ndfcl  17277  gaid  18170  tx2cn  21902  txkgen  21944  xpinpreima  30766  xpinpreima2  30767  2ndmbfm  31136  filnetlem4  33339  hausgraph  39316
  Copyright terms: Public domain W3C validator