| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f2ndres | Structured version Visualization version GIF version | ||
| Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| f2ndres | ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 2 | vex 3463 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 3 | 1, 2 | op2nda 6217 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑧〉} = 𝑧 |
| 4 | 3 | eleq1i 2825 | . . . . . 6 ⊢ (∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 5 | 4 | biimpri 228 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
| 7 | 6 | rgen2 3184 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵 |
| 8 | sneq 4611 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
| 9 | 8 | rneqd 5918 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ran {𝑥} = ran {〈𝑦, 𝑧〉}) |
| 10 | 9 | unieqd 4896 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑧〉}) |
| 11 | 10 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ ran {𝑥} ∈ 𝐵 ↔ ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵)) |
| 12 | 11 | ralxp 5821 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
| 13 | 7, 12 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 |
| 14 | df-2nd 7989 | . . . . 5 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 15 | 14 | reseq1i 5962 | . . . 4 ⊢ (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) |
| 16 | ssv 3983 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
| 17 | resmpt 6024 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥})) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
| 19 | 15, 18 | eqtri 2758 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
| 20 | 19 | fmpt 7100 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵) |
| 21 | 13, 20 | mpbi 230 | 1 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 {csn 4601 〈cop 4607 ∪ cuni 4883 ↦ cmpt 5201 × cxp 5652 ran crn 5655 ↾ cres 5656 ⟶wf 6527 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-2nd 7989 |
| This theorem is referenced by: fo2ndres 8015 2ndcof 8019 fparlem2 8112 f2ndf 8119 eucalgcvga 16605 2ndfcl 18210 gaid 19282 tx2cn 23548 txkgen 23590 xpinpreima 33937 xpinpreima2 33938 2ndmbfm 34293 filnetlem4 36399 hausgraph 43229 |
| Copyright terms: Public domain | W3C validator |