MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f2ndres Structured version   Visualization version   GIF version

Theorem f2ndres 7956
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
f2ndres (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵

Proof of Theorem f2ndres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . . . . 8 𝑦 ∈ V
2 vex 3442 . . . . . . . 8 𝑧 ∈ V
31, 2op2nda 6181 . . . . . . 7 ran {⟨𝑦, 𝑧⟩} = 𝑧
43eleq1i 2819 . . . . . 6 ( ran {⟨𝑦, 𝑧⟩} ∈ 𝐵𝑧𝐵)
54biimpri 228 . . . . 5 (𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
65adantl 481 . . . 4 ((𝑦𝐴𝑧𝐵) → ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
76rgen2 3169 . . 3 𝑦𝐴𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵
8 sneq 4589 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩})
98rneqd 5884 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩})
109unieqd 4874 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩})
1110eleq1d 2813 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ( ran {𝑥} ∈ 𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵))
1211ralxp 5788 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵 ↔ ∀𝑦𝐴𝑧𝐵 ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)
137, 12mpbir 231 . 2 𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵
14 df-2nd 7932 . . . . 5 2nd = (𝑥 ∈ V ↦ ran {𝑥})
1514reseq1i 5930 . . . 4 (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵))
16 ssv 3962 . . . . 5 (𝐴 × 𝐵) ⊆ V
17 resmpt 5992 . . . . 5 ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥}))
1816, 17ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥})
1915, 18eqtri 2752 . . 3 (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ran {𝑥})
2019fmpt 7048 . 2 (∀𝑥 ∈ (𝐴 × 𝐵) ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵)
2113, 20mpbi 230 1 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  {csn 4579  cop 4585   cuni 4861  cmpt 5176   × cxp 5621  ran crn 5624  cres 5625  wf 6482  2nd c2nd 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489  df-f 6490  df-2nd 7932
This theorem is referenced by:  fo2ndres  7958  2ndcof  7962  fparlem2  8053  f2ndf  8060  eucalgcvga  16515  2ndfcl  18122  gaid  19196  tx2cn  23513  txkgen  23555  xpinpreima  33872  xpinpreima2  33873  2ndmbfm  34228  filnetlem4  36354  hausgraph  43178
  Copyright terms: Public domain W3C validator