| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f2ndres | Structured version Visualization version GIF version | ||
| Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| f2ndres | ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 2 | vex 3441 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 3 | 1, 2 | op2nda 6180 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑧〉} = 𝑧 |
| 4 | 3 | eleq1i 2824 | . . . . . 6 ⊢ (∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 5 | 4 | biimpri 228 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
| 7 | 6 | rgen2 3173 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵 |
| 8 | sneq 4585 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
| 9 | 8 | rneqd 5882 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ran {𝑥} = ran {〈𝑦, 𝑧〉}) |
| 10 | 9 | unieqd 4871 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑧〉}) |
| 11 | 10 | eleq1d 2818 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ ran {𝑥} ∈ 𝐵 ↔ ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵)) |
| 12 | 11 | ralxp 5785 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
| 13 | 7, 12 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 |
| 14 | df-2nd 7928 | . . . . 5 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 15 | 14 | reseq1i 5928 | . . . 4 ⊢ (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) |
| 16 | ssv 3955 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
| 17 | resmpt 5990 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥})) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
| 19 | 15, 18 | eqtri 2756 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
| 20 | 19 | fmpt 7049 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵) |
| 21 | 13, 20 | mpbi 230 | 1 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 {csn 4575 〈cop 4581 ∪ cuni 4858 ↦ cmpt 5174 × cxp 5617 ran crn 5620 ↾ cres 5621 ⟶wf 6482 2nd c2nd 7926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-2nd 7928 |
| This theorem is referenced by: fo2ndres 7954 2ndcof 7958 fparlem2 8049 f2ndf 8056 eucalgcvga 16499 2ndfcl 18106 gaid 19213 tx2cn 23526 txkgen 23568 xpinpreima 33940 xpinpreima2 33941 2ndmbfm 34295 filnetlem4 36446 hausgraph 43322 |
| Copyright terms: Public domain | W3C validator |