![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f2ndres | Structured version Visualization version GIF version |
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f2ndres | ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
2 | vex 3479 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
3 | 1, 2 | op2nda 6225 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑧〉} = 𝑧 |
4 | 3 | eleq1i 2825 | . . . . . 6 ⊢ (∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
5 | 4 | biimpri 227 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
6 | 5 | adantl 483 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
7 | 6 | rgen2 3198 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵 |
8 | sneq 4638 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → {𝑥} = {〈𝑦, 𝑧〉}) | |
9 | 8 | rneqd 5936 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ran {𝑥} = ran {〈𝑦, 𝑧〉}) |
10 | 9 | unieqd 4922 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑧〉}) |
11 | 10 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (∪ ran {𝑥} ∈ 𝐵 ↔ ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵)) |
12 | 11 | ralxp 5840 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {〈𝑦, 𝑧〉} ∈ 𝐵) |
13 | 7, 12 | mpbir 230 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 |
14 | df-2nd 7973 | . . . . 5 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
15 | 14 | reseq1i 5976 | . . . 4 ⊢ (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) |
16 | ssv 4006 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
17 | resmpt 6036 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥})) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
19 | 15, 18 | eqtri 2761 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
20 | 19 | fmpt 7107 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵) |
21 | 13, 20 | mpbi 229 | 1 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ⊆ wss 3948 {csn 4628 〈cop 4634 ∪ cuni 4908 ↦ cmpt 5231 × cxp 5674 ran crn 5677 ↾ cres 5678 ⟶wf 6537 2nd c2nd 7971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6543 df-fn 6544 df-f 6545 df-2nd 7973 |
This theorem is referenced by: fo2ndres 7999 2ndcof 8003 fparlem2 8096 f2ndf 8103 eucalgcvga 16520 2ndfcl 18147 gaid 19158 tx2cn 23106 txkgen 23148 xpinpreima 32875 xpinpreima2 32876 2ndmbfm 33249 filnetlem4 35255 hausgraph 41940 |
Copyright terms: Public domain | W3C validator |