![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f2ndres | Structured version Visualization version GIF version |
Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
f2ndres | ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3476 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
2 | vex 3476 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
3 | 1, 2 | op2nda 6226 | . . . . . . 7 ⊢ ∪ ran {⟨𝑦, 𝑧⟩} = 𝑧 |
4 | 3 | eleq1i 2822 | . . . . . 6 ⊢ (∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
5 | 4 | biimpri 227 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵) |
6 | 5 | adantl 480 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵) |
7 | 6 | rgen2 3195 | . . 3 ⊢ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵 |
8 | sneq 4637 | . . . . . . 7 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → {𝑥} = {⟨𝑦, 𝑧⟩}) | |
9 | 8 | rneqd 5936 | . . . . . 6 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ran {𝑥} = ran {⟨𝑦, 𝑧⟩}) |
10 | 9 | unieqd 4921 | . . . . 5 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ∪ ran {𝑥} = ∪ ran {⟨𝑦, 𝑧⟩}) |
11 | 10 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (∪ ran {𝑥} ∈ 𝐵 ↔ ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵)) |
12 | 11 | ralxp 5840 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∪ ran {⟨𝑦, 𝑧⟩} ∈ 𝐵) |
13 | 7, 12 | mpbir 230 | . 2 ⊢ ∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 |
14 | df-2nd 7978 | . . . . 5 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
15 | 14 | reseq1i 5976 | . . . 4 ⊢ (2nd ↾ (𝐴 × 𝐵)) = ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) |
16 | ssv 4005 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ V | |
17 | resmpt 6036 | . . . . 5 ⊢ ((𝐴 × 𝐵) ⊆ V → ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥})) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ ((𝑥 ∈ V ↦ ∪ ran {𝑥}) ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
19 | 15, 18 | eqtri 2758 | . . 3 ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ran {𝑥}) |
20 | 19 | fmpt 7110 | . 2 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵)∪ ran {𝑥} ∈ 𝐵 ↔ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵) |
21 | 13, 20 | mpbi 229 | 1 ⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∀wral 3059 Vcvv 3472 ⊆ wss 3947 {csn 4627 ⟨cop 4633 ∪ cuni 4907 ↦ cmpt 5230 × cxp 5673 ran crn 5676 ↾ cres 5677 ⟶wf 6538 2nd c2nd 7976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6544 df-fn 6545 df-f 6546 df-2nd 7978 |
This theorem is referenced by: fo2ndres 8004 2ndcof 8008 fparlem2 8101 f2ndf 8108 eucalgcvga 16527 2ndfcl 18154 gaid 19204 tx2cn 23334 txkgen 23376 xpinpreima 33184 xpinpreima2 33185 2ndmbfm 33558 filnetlem4 35569 hausgraph 42256 |
Copyright terms: Public domain | W3C validator |