MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 8051
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5449 . . . . 5 {𝑥} ∈ V
21rnex 7950 . . . 4 ran {𝑥} ∈ V
32uniex 7776 . . 3 ran {𝑥} ∈ V
4 df-2nd 8031 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6723 . 2 2nd Fn V
64rnmpt 5980 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3492 . . . . 5 𝑦 ∈ V
8 opex 5484 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 6259 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2749 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4658 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5963 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4944 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413rspceeqv 3658 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
158, 10, 14mp2an 691 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1716eqabi 2880 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
186, 17eqtr4i 2771 . 2 ran 2nd = V
19 df-fo 6579 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
205, 18, 19mpbir2an 710 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  {csn 4648  cop 4654   cuni 4931  ran crn 5701   Fn wfn 6568  ontowfo 6571  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-fo 6579  df-2nd 8031
This theorem is referenced by:  br2ndeqg  8053  2ndcof  8061  df2nd2  8140  2ndconst  8142  opco2  8165  iunfo  10608  cdaf  18117  2ndf1  18264  2ndf2  18265  2ndfcl  18267  gsum2dlem2  20013  upxp  23652  uptx  23654  cnmpt2nd  23698  uniiccdif  25632  precsexlem10  28258  precsexlem11  28259  xppreima  32664  2ndimaxp  32665  2ndresdju  32667  xppreima2  32669  2ndpreima  32719  fsuppcurry1  32739  gsummpt2d  33032  gsumpart  33038  cnre2csqima  33857  filnetlem4  36347
  Copyright terms: Public domain W3C validator