| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version | ||
| Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo2nd | ⊢ 2nd :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5389 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | 1 | rnex 7886 | . . . 4 ⊢ ran {𝑥} ∈ V |
| 3 | 2 | uniex 7717 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
| 4 | df-2nd 7969 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 5 | 3, 4 | fnmpti 6661 | . 2 ⊢ 2nd Fn V |
| 6 | 4 | rnmpt 5921 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 7 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | opex 5424 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
| 9 | 7, 7 | op2nda 6201 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
| 10 | 9 | eqcomi 2738 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
| 11 | sneq 4599 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 12 | 11 | rneqd 5902 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
| 13 | 12 | unieqd 4884 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
| 14 | 13 | rspceeqv 3611 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 15 | 8, 10, 14 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
| 16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 17 | 16 | eqabi 2863 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 18 | 6, 17 | eqtr4i 2755 | . 2 ⊢ ran 2nd = V |
| 19 | df-fo 6517 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
| 20 | 5, 18, 19 | mpbir2an 711 | 1 ⊢ 2nd :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 {csn 4589 〈cop 4595 ∪ cuni 4871 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 2nd c2nd 7967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-fo 6517 df-2nd 7969 |
| This theorem is referenced by: br2ndeqg 7991 2ndcof 7999 df2nd2 8078 2ndconst 8080 opco2 8103 iunfo 10492 cdaf 18012 2ndf1 18156 2ndf2 18157 2ndfcl 18159 gsum2dlem2 19901 upxp 23510 uptx 23512 cnmpt2nd 23556 uniiccdif 25479 precsexlem10 28118 precsexlem11 28119 xppreima 32569 2ndimaxp 32570 2ndresdju 32573 xppreima2 32575 2ndpreima 32631 fsuppcurry1 32648 gsummpt2d 32989 gsumpart 32997 cnre2csqima 33901 filnetlem4 36369 |
| Copyright terms: Public domain | W3C validator |