MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7712
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5334 . . . . 5 {𝑥} ∈ V
21rnex 7619 . . . 4 ran {𝑥} ∈ V
32uniex 7469 . . 3 ran {𝑥} ∈ V
4 df-2nd 7692 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6493 . 2 2nd Fn V
64rnmpt 5829 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3499 . . . . 5 𝑦 ∈ V
8 opex 5358 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 6087 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2832 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4579 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5810 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4854 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413rspceeqv 3640 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
158, 10, 14mp2an 690 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
167, 152th 266 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1716abbi2i 2955 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
186, 17eqtr4i 2849 . 2 ran 2nd = V
19 df-fo 6363 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
205, 18, 19mpbir2an 709 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  {cab 2801  wrex 3141  Vcvv 3496  {csn 4569  cop 4575   cuni 4840  ran crn 5558   Fn wfn 6352  ontowfo 6355  2nd c2nd 7690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-fun 6359  df-fn 6360  df-fo 6363  df-2nd 7692
This theorem is referenced by:  br2ndeqg  7714  2ndcof  7722  df2nd2  7796  2ndconst  7798  iunfo  9963  cdaf  17312  2ndf1  17447  2ndf2  17448  2ndfcl  17450  gsum2dlem2  19093  upxp  22233  uptx  22235  cnmpt2nd  22279  uniiccdif  24181  xppreima  30396  xppreima2  30397  2ndpreima  30445  fsuppcurry1  30463  gsummpt2d  30689  cnre2csqima  31156  filnetlem4  33731
  Copyright terms: Public domain W3C validator