MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7825
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . . . 5 {𝑥} ∈ V
21rnex 7733 . . . 4 ran {𝑥} ∈ V
32uniex 7572 . . 3 ran {𝑥} ∈ V
4 df-2nd 7805 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6560 . 2 2nd Fn V
64rnmpt 5853 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3426 . . . . 5 𝑦 ∈ V
8 opex 5373 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 6120 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2747 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4568 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5836 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4850 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413rspceeqv 3567 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
158, 10, 14mp2an 688 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
167, 152th 263 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1716abbi2i 2878 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
186, 17eqtr4i 2769 . 2 ran 2nd = V
19 df-fo 6424 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
205, 18, 19mpbir2an 707 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422  {csn 4558  cop 4564   cuni 4836  ran crn 5581   Fn wfn 6413  ontowfo 6416  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-fo 6424  df-2nd 7805
This theorem is referenced by:  br2ndeqg  7827  2ndcof  7835  df2nd2  7910  2ndconst  7912  opco2  7936  iunfo  10226  cdaf  17681  2ndf1  17828  2ndf2  17829  2ndfcl  17831  gsum2dlem2  19487  upxp  22682  uptx  22684  cnmpt2nd  22728  uniiccdif  24647  xppreima  30884  2ndimaxp  30885  2ndresdju  30887  xppreima2  30889  2ndpreima  30942  fsuppcurry1  30962  gsummpt2d  31211  gsumpart  31217  cnre2csqima  31763  filnetlem4  34497
  Copyright terms: Public domain W3C validator