| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version | ||
| Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo2nd | ⊢ 2nd :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5372 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | 1 | rnex 7840 | . . . 4 ⊢ ran {𝑥} ∈ V |
| 3 | 2 | uniex 7674 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
| 4 | df-2nd 7922 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 5 | 3, 4 | fnmpti 6624 | . 2 ⊢ 2nd Fn V |
| 6 | 4 | rnmpt 5897 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 7 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | opex 5404 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
| 9 | 7, 7 | op2nda 6175 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
| 10 | 9 | eqcomi 2740 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
| 11 | sneq 4586 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 12 | 11 | rneqd 5878 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
| 13 | 12 | unieqd 4872 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
| 14 | 13 | rspceeqv 3600 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 15 | 8, 10, 14 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
| 16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 17 | 16 | eqabi 2866 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 18 | 6, 17 | eqtr4i 2757 | . 2 ⊢ ran 2nd = V |
| 19 | df-fo 6487 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
| 20 | 5, 18, 19 | mpbir2an 711 | 1 ⊢ 2nd :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 {csn 4576 〈cop 4582 ∪ cuni 4859 ran crn 5617 Fn wfn 6476 –onto→wfo 6479 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-fo 6487 df-2nd 7922 |
| This theorem is referenced by: br2ndeqg 7944 2ndcof 7952 df2nd2 8029 2ndconst 8031 opco2 8054 iunfo 10427 cdaf 17954 2ndf1 18098 2ndf2 18099 2ndfcl 18101 gsum2dlem2 19881 upxp 23536 uptx 23538 cnmpt2nd 23582 uniiccdif 25504 precsexlem10 28152 precsexlem11 28153 xppreima 32622 2ndimaxp 32623 2ndresdju 32626 xppreima2 32628 2ndpreima 32684 fsuppcurry1 32702 gsummpt2d 33024 gsumpart 33032 cnre2csqima 33919 filnetlem4 36414 |
| Copyright terms: Public domain | W3C validator |