| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version | ||
| Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo2nd | ⊢ 2nd :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5404 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | 1 | rnex 7904 | . . . 4 ⊢ ran {𝑥} ∈ V |
| 3 | 2 | uniex 7733 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
| 4 | df-2nd 7987 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 5 | 3, 4 | fnmpti 6680 | . 2 ⊢ 2nd Fn V |
| 6 | 4 | rnmpt 5937 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 7 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | opex 5439 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
| 9 | 7, 7 | op2nda 6217 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
| 10 | 9 | eqcomi 2744 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
| 11 | sneq 4611 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 12 | 11 | rneqd 5918 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
| 13 | 12 | unieqd 4896 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
| 14 | 13 | rspceeqv 3624 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 15 | 8, 10, 14 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
| 16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 17 | 16 | eqabi 2870 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 18 | 6, 17 | eqtr4i 2761 | . 2 ⊢ ran 2nd = V |
| 19 | df-fo 6536 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
| 20 | 5, 18, 19 | mpbir2an 711 | 1 ⊢ 2nd :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 {csn 4601 〈cop 4607 ∪ cuni 4883 ran crn 5655 Fn wfn 6525 –onto→wfo 6528 2nd c2nd 7985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6532 df-fn 6533 df-fo 6536 df-2nd 7987 |
| This theorem is referenced by: br2ndeqg 8009 2ndcof 8017 df2nd2 8096 2ndconst 8098 opco2 8121 iunfo 10551 cdaf 18061 2ndf1 18205 2ndf2 18206 2ndfcl 18208 gsum2dlem2 19950 upxp 23559 uptx 23561 cnmpt2nd 23605 uniiccdif 25529 precsexlem10 28157 precsexlem11 28158 xppreima 32569 2ndimaxp 32570 2ndresdju 32573 xppreima2 32575 2ndpreima 32631 fsuppcurry1 32648 gsummpt2d 32989 gsumpart 32997 cnre2csqima 33888 filnetlem4 36345 |
| Copyright terms: Public domain | W3C validator |