MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7989
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5389 . . . . 5 {𝑥} ∈ V
21rnex 7886 . . . 4 ran {𝑥} ∈ V
32uniex 7717 . . 3 ran {𝑥} ∈ V
4 df-2nd 7969 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6661 . 2 2nd Fn V
64rnmpt 5921 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3451 . . . . 5 𝑦 ∈ V
8 opex 5424 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 6201 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2738 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4599 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5902 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4884 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413rspceeqv 3611 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
158, 10, 14mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1716eqabi 2863 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
186, 17eqtr4i 2755 . 2 ran 2nd = V
19 df-fo 6517 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
205, 18, 19mpbir2an 711 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  {csn 4589  cop 4595   cuni 4871  ran crn 5639   Fn wfn 6506  ontowfo 6509  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-fo 6517  df-2nd 7969
This theorem is referenced by:  br2ndeqg  7991  2ndcof  7999  df2nd2  8078  2ndconst  8080  opco2  8103  iunfo  10492  cdaf  18012  2ndf1  18156  2ndf2  18157  2ndfcl  18159  gsum2dlem2  19901  upxp  23510  uptx  23512  cnmpt2nd  23556  uniiccdif  25479  precsexlem10  28118  precsexlem11  28119  xppreima  32569  2ndimaxp  32570  2ndresdju  32573  xppreima2  32575  2ndpreima  32631  fsuppcurry1  32648  gsummpt2d  32989  gsumpart  32997  cnre2csqima  33901  filnetlem4  36369
  Copyright terms: Public domain W3C validator