Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ⊢ 2nd :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnex 5381 | . . . . 5 ⊢ {𝑥} ∈ V | |
2 | 1 | rnex 7836 | . . . 4 ⊢ ran {𝑥} ∈ V |
3 | 2 | uniex 7665 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
4 | df-2nd 7909 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
5 | 3, 4 | fnmpti 6636 | . 2 ⊢ 2nd Fn V |
6 | 4 | rnmpt 5903 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
7 | vex 3447 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | opex 5416 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
9 | 7, 7 | op2nda 6173 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
10 | 9 | eqcomi 2746 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
11 | sneq 4591 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
12 | 11 | rneqd 5886 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
13 | 12 | unieqd 4874 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
14 | 13 | rspceeqv 3590 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
15 | 8, 10, 14 | mp2an 690 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
17 | 16 | abbi2i 2878 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
18 | 6, 17 | eqtr4i 2768 | . 2 ⊢ ran 2nd = V |
19 | df-fo 6494 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
20 | 5, 18, 19 | mpbir2an 709 | 1 ⊢ 2nd :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {cab 2714 ∃wrex 3071 Vcvv 3443 {csn 4581 〈cop 4587 ∪ cuni 4860 ran crn 5628 Fn wfn 6483 –onto→wfo 6486 2nd c2nd 7907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-fun 6490 df-fn 6491 df-fo 6494 df-2nd 7909 |
This theorem is referenced by: br2ndeqg 7931 2ndcof 7939 df2nd2 8016 2ndconst 8018 opco2 8041 iunfo 10405 cdaf 17867 2ndf1 18014 2ndf2 18015 2ndfcl 18017 gsum2dlem2 19671 upxp 22884 uptx 22886 cnmpt2nd 22930 uniiccdif 24852 xppreima 31334 2ndimaxp 31335 2ndresdju 31337 xppreima2 31339 2ndpreima 31391 fsuppcurry1 31411 gsummpt2d 31660 gsumpart 31666 cnre2csqima 32223 filnetlem4 34709 |
Copyright terms: Public domain | W3C validator |