![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ā¢ 2nd :VāontoāV |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnex 5428 | . . . . 5 ā¢ {š„} ā V | |
2 | 1 | rnex 7899 | . . . 4 ā¢ ran {š„} ā V |
3 | 2 | uniex 7727 | . . 3 ā¢ āŖ ran {š„} ā V |
4 | df-2nd 7972 | . . 3 ā¢ 2nd = (š„ ā V ā¦ āŖ ran {š„}) | |
5 | 3, 4 | fnmpti 6690 | . 2 ā¢ 2nd Fn V |
6 | 4 | rnmpt 5952 | . . 3 ā¢ ran 2nd = {š¦ ā£ āš„ ā V š¦ = āŖ ran {š„}} |
7 | vex 3478 | . . . . 5 ā¢ š¦ ā V | |
8 | opex 5463 | . . . . . 6 ā¢ āØš¦, š¦ā© ā V | |
9 | 7, 7 | op2nda 6224 | . . . . . . 7 ā¢ āŖ ran {āØš¦, š¦ā©} = š¦ |
10 | 9 | eqcomi 2741 | . . . . . 6 ā¢ š¦ = āŖ ran {āØš¦, š¦ā©} |
11 | sneq 4637 | . . . . . . . . 9 ā¢ (š„ = āØš¦, š¦ā© ā {š„} = {āØš¦, š¦ā©}) | |
12 | 11 | rneqd 5935 | . . . . . . . 8 ā¢ (š„ = āØš¦, š¦ā© ā ran {š„} = ran {āØš¦, š¦ā©}) |
13 | 12 | unieqd 4921 | . . . . . . 7 ā¢ (š„ = āØš¦, š¦ā© ā āŖ ran {š„} = āŖ ran {āØš¦, š¦ā©}) |
14 | 13 | rspceeqv 3632 | . . . . . 6 ā¢ ((āØš¦, š¦ā© ā V ā§ š¦ = āŖ ran {āØš¦, š¦ā©}) ā āš„ ā V š¦ = āŖ ran {š„}) |
15 | 8, 10, 14 | mp2an 690 | . . . . 5 ā¢ āš„ ā V š¦ = āŖ ran {š„} |
16 | 7, 15 | 2th 263 | . . . 4 ā¢ (š¦ ā V ā āš„ ā V š¦ = āŖ ran {š„}) |
17 | 16 | eqabi 2869 | . . 3 ā¢ V = {š¦ ā£ āš„ ā V š¦ = āŖ ran {š„}} |
18 | 6, 17 | eqtr4i 2763 | . 2 ā¢ ran 2nd = V |
19 | df-fo 6546 | . 2 ā¢ (2nd :VāontoāV ā (2nd Fn V ā§ ran 2nd = V)) | |
20 | 5, 18, 19 | mpbir2an 709 | 1 ā¢ 2nd :VāontoāV |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ā wcel 2106 {cab 2709 āwrex 3070 Vcvv 3474 {csn 4627 āØcop 4633 āŖ cuni 4907 ran crn 5676 Fn wfn 6535 āontoāwfo 6538 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-fo 6546 df-2nd 7972 |
This theorem is referenced by: br2ndeqg 7994 2ndcof 8002 df2nd2 8081 2ndconst 8083 opco2 8106 iunfo 10530 cdaf 17996 2ndf1 18143 2ndf2 18144 2ndfcl 18146 gsum2dlem2 19833 upxp 23118 uptx 23120 cnmpt2nd 23164 uniiccdif 25086 precsexlem10 27651 precsexlem11 27652 xppreima 31858 2ndimaxp 31859 2ndresdju 31861 xppreima2 31863 2ndpreima 31916 fsuppcurry1 31937 gsummpt2d 32188 gsumpart 32194 cnre2csqima 32879 filnetlem4 35254 |
Copyright terms: Public domain | W3C validator |