Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ⊢ 2nd :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5300 | . . . . 5 ⊢ {𝑥} ∈ V | |
2 | 1 | rnex 7622 | . . . 4 ⊢ ran {𝑥} ∈ V |
3 | 2 | uniex 7465 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
4 | df-2nd 7694 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
5 | 3, 4 | fnmpti 6474 | . 2 ⊢ 2nd Fn V |
6 | 4 | rnmpt 5796 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
7 | vex 3413 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | opex 5324 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
9 | 7, 7 | op2nda 6057 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
10 | 9 | eqcomi 2767 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
11 | sneq 4532 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
12 | 11 | rneqd 5779 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
13 | 12 | unieqd 4812 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
14 | 13 | rspceeqv 3556 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
15 | 8, 10, 14 | mp2an 691 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
16 | 7, 15 | 2th 267 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
17 | 16 | abbi2i 2891 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
18 | 6, 17 | eqtr4i 2784 | . 2 ⊢ ran 2nd = V |
19 | df-fo 6341 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
20 | 5, 18, 19 | mpbir2an 710 | 1 ⊢ 2nd :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 {cab 2735 ∃wrex 3071 Vcvv 3409 {csn 4522 〈cop 4528 ∪ cuni 4798 ran crn 5525 Fn wfn 6330 –onto→wfo 6333 2nd c2nd 7692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-fun 6337 df-fn 6338 df-fo 6341 df-2nd 7694 |
This theorem is referenced by: br2ndeqg 7716 2ndcof 7724 df2nd2 7799 2ndconst 7801 iunfo 9999 cdaf 17376 2ndf1 17511 2ndf2 17512 2ndfcl 17514 gsum2dlem2 19159 upxp 22323 uptx 22325 cnmpt2nd 22369 uniiccdif 24278 xppreima 30506 2ndimaxp 30507 2ndresdju 30509 xppreima2 30511 2ndpreima 30564 fsuppcurry1 30584 gsummpt2d 30835 gsumpart 30841 cnre2csqima 31382 filnetlem4 34119 |
Copyright terms: Public domain | W3C validator |