MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7929
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5381 . . . . 5 {𝑥} ∈ V
21rnex 7836 . . . 4 ran {𝑥} ∈ V
32uniex 7665 . . 3 ran {𝑥} ∈ V
4 df-2nd 7909 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6636 . 2 2nd Fn V
64rnmpt 5903 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3447 . . . . 5 𝑦 ∈ V
8 opex 5416 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 6173 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2746 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4591 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5886 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4874 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413rspceeqv 3590 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
158, 10, 14mp2an 690 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1716abbi2i 2878 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
186, 17eqtr4i 2768 . 2 ran 2nd = V
19 df-fo 6494 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
205, 18, 19mpbir2an 709 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {cab 2714  wrex 3071  Vcvv 3443  {csn 4581  cop 4587   cuni 4860  ran crn 5628   Fn wfn 6483  ontowfo 6486  2nd c2nd 7907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-fun 6490  df-fn 6491  df-fo 6494  df-2nd 7909
This theorem is referenced by:  br2ndeqg  7931  2ndcof  7939  df2nd2  8016  2ndconst  8018  opco2  8041  iunfo  10405  cdaf  17867  2ndf1  18014  2ndf2  18015  2ndfcl  18017  gsum2dlem2  19671  upxp  22884  uptx  22886  cnmpt2nd  22930  uniiccdif  24852  xppreima  31334  2ndimaxp  31335  2ndresdju  31337  xppreima2  31339  2ndpreima  31391  fsuppcurry1  31411  gsummpt2d  31660  gsumpart  31666  cnre2csqima  32223  filnetlem4  34709
  Copyright terms: Public domain W3C validator