MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7692
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5297 . . . . 5 {𝑥} ∈ V
21rnex 7599 . . . 4 ran {𝑥} ∈ V
32uniex 7447 . . 3 ran {𝑥} ∈ V
4 df-2nd 7672 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6463 . 2 2nd Fn V
64rnmpt 5791 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3444 . . . . 5 𝑦 ∈ V
8 opex 5321 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 6052 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2807 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4535 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5772 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4814 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413rspceeqv 3586 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
158, 10, 14mp2an 691 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
167, 152th 267 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1716abbi2i 2929 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
186, 17eqtr4i 2824 . 2 ran 2nd = V
19 df-fo 6330 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
205, 18, 19mpbir2an 710 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  {cab 2776  wrex 3107  Vcvv 3441  {csn 4525  cop 4531   cuni 4800  ran crn 5520   Fn wfn 6319  ontowfo 6322  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-fun 6326  df-fn 6327  df-fo 6330  df-2nd 7672
This theorem is referenced by:  br2ndeqg  7694  2ndcof  7702  df2nd2  7777  2ndconst  7779  iunfo  9950  cdaf  17302  2ndf1  17437  2ndf2  17438  2ndfcl  17440  gsum2dlem2  19084  upxp  22228  uptx  22230  cnmpt2nd  22274  uniiccdif  24182  xppreima  30408  2ndimaxp  30409  2ndresdju  30411  xppreima2  30413  2ndpreima  30467  fsuppcurry1  30487  gsummpt2d  30734  gsumpart  30740  cnre2csqima  31264  filnetlem4  33842
  Copyright terms: Public domain W3C validator