MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7992
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :Vā€“ontoā†’V

Proof of Theorem fo2nd
Dummy variables š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5428 . . . . 5 {š‘„} āˆˆ V
21rnex 7899 . . . 4 ran {š‘„} āˆˆ V
32uniex 7727 . . 3 āˆŖ ran {š‘„} āˆˆ V
4 df-2nd 7972 . . 3 2nd = (š‘„ āˆˆ V ā†¦ āˆŖ ran {š‘„})
53, 4fnmpti 6690 . 2 2nd Fn V
64rnmpt 5952 . . 3 ran 2nd = {š‘¦ āˆ£ āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„}}
7 vex 3478 . . . . 5 š‘¦ āˆˆ V
8 opex 5463 . . . . . 6 āŸØš‘¦, š‘¦āŸ© āˆˆ V
97, 7op2nda 6224 . . . . . . 7 āˆŖ ran {āŸØš‘¦, š‘¦āŸ©} = š‘¦
109eqcomi 2741 . . . . . 6 š‘¦ = āˆŖ ran {āŸØš‘¦, š‘¦āŸ©}
11 sneq 4637 . . . . . . . . 9 (š‘„ = āŸØš‘¦, š‘¦āŸ© ā†’ {š‘„} = {āŸØš‘¦, š‘¦āŸ©})
1211rneqd 5935 . . . . . . . 8 (š‘„ = āŸØš‘¦, š‘¦āŸ© ā†’ ran {š‘„} = ran {āŸØš‘¦, š‘¦āŸ©})
1312unieqd 4921 . . . . . . 7 (š‘„ = āŸØš‘¦, š‘¦āŸ© ā†’ āˆŖ ran {š‘„} = āˆŖ ran {āŸØš‘¦, š‘¦āŸ©})
1413rspceeqv 3632 . . . . . 6 ((āŸØš‘¦, š‘¦āŸ© āˆˆ V āˆ§ š‘¦ = āˆŖ ran {āŸØš‘¦, š‘¦āŸ©}) ā†’ āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„})
158, 10, 14mp2an 690 . . . . 5 āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„}
167, 152th 263 . . . 4 (š‘¦ āˆˆ V ā†” āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„})
1716eqabi 2869 . . 3 V = {š‘¦ āˆ£ āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„}}
186, 17eqtr4i 2763 . 2 ran 2nd = V
19 df-fo 6546 . 2 (2nd :Vā€“ontoā†’V ā†” (2nd Fn V āˆ§ ran 2nd = V))
205, 18, 19mpbir2an 709 1 2nd :Vā€“ontoā†’V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   āˆˆ wcel 2106  {cab 2709  āˆƒwrex 3070  Vcvv 3474  {csn 4627  āŸØcop 4633  āˆŖ cuni 4907  ran crn 5676   Fn wfn 6535  ā€“ontoā†’wfo 6538  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-fun 6542  df-fn 6543  df-fo 6546  df-2nd 7972
This theorem is referenced by:  br2ndeqg  7994  2ndcof  8002  df2nd2  8081  2ndconst  8083  opco2  8106  iunfo  10530  cdaf  17996  2ndf1  18143  2ndf2  18144  2ndfcl  18146  gsum2dlem2  19833  upxp  23118  uptx  23120  cnmpt2nd  23164  uniiccdif  25086  precsexlem10  27651  precsexlem11  27652  xppreima  31858  2ndimaxp  31859  2ndresdju  31861  xppreima2  31863  2ndpreima  31916  fsuppcurry1  31937  gsummpt2d  32188  gsumpart  32194  cnre2csqima  32879  filnetlem4  35254
  Copyright terms: Public domain W3C validator