![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ā¢ 2nd :VāontoāV |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnex 5430 | . . . . 5 ā¢ {š„} ā V | |
2 | 1 | rnex 7903 | . . . 4 ā¢ ran {š„} ā V |
3 | 2 | uniex 7731 | . . 3 ā¢ āŖ ran {š„} ā V |
4 | df-2nd 7976 | . . 3 ā¢ 2nd = (š„ ā V ā¦ āŖ ran {š„}) | |
5 | 3, 4 | fnmpti 6694 | . 2 ā¢ 2nd Fn V |
6 | 4 | rnmpt 5955 | . . 3 ā¢ ran 2nd = {š¦ ā£ āš„ ā V š¦ = āŖ ran {š„}} |
7 | vex 3479 | . . . . 5 ā¢ š¦ ā V | |
8 | opex 5465 | . . . . . 6 ā¢ āØš¦, š¦ā© ā V | |
9 | 7, 7 | op2nda 6228 | . . . . . . 7 ā¢ āŖ ran {āØš¦, š¦ā©} = š¦ |
10 | 9 | eqcomi 2742 | . . . . . 6 ā¢ š¦ = āŖ ran {āØš¦, š¦ā©} |
11 | sneq 4639 | . . . . . . . . 9 ā¢ (š„ = āØš¦, š¦ā© ā {š„} = {āØš¦, š¦ā©}) | |
12 | 11 | rneqd 5938 | . . . . . . . 8 ā¢ (š„ = āØš¦, š¦ā© ā ran {š„} = ran {āØš¦, š¦ā©}) |
13 | 12 | unieqd 4923 | . . . . . . 7 ā¢ (š„ = āØš¦, š¦ā© ā āŖ ran {š„} = āŖ ran {āØš¦, š¦ā©}) |
14 | 13 | rspceeqv 3634 | . . . . . 6 ā¢ ((āØš¦, š¦ā© ā V ā§ š¦ = āŖ ran {āØš¦, š¦ā©}) ā āš„ ā V š¦ = āŖ ran {š„}) |
15 | 8, 10, 14 | mp2an 691 | . . . . 5 ā¢ āš„ ā V š¦ = āŖ ran {š„} |
16 | 7, 15 | 2th 264 | . . . 4 ā¢ (š¦ ā V ā āš„ ā V š¦ = āŖ ran {š„}) |
17 | 16 | eqabi 2870 | . . 3 ā¢ V = {š¦ ā£ āš„ ā V š¦ = āŖ ran {š„}} |
18 | 6, 17 | eqtr4i 2764 | . 2 ā¢ ran 2nd = V |
19 | df-fo 6550 | . 2 ā¢ (2nd :VāontoāV ā (2nd Fn V ā§ ran 2nd = V)) | |
20 | 5, 18, 19 | mpbir2an 710 | 1 ā¢ 2nd :VāontoāV |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ā wcel 2107 {cab 2710 āwrex 3071 Vcvv 3475 {csn 4629 āØcop 4635 āŖ cuni 4909 ran crn 5678 Fn wfn 6539 āontoāwfo 6542 2nd c2nd 7974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-fo 6550 df-2nd 7976 |
This theorem is referenced by: br2ndeqg 7998 2ndcof 8006 df2nd2 8085 2ndconst 8087 opco2 8110 iunfo 10534 cdaf 18000 2ndf1 18147 2ndf2 18148 2ndfcl 18150 gsum2dlem2 19839 upxp 23127 uptx 23129 cnmpt2nd 23173 uniiccdif 25095 precsexlem10 27662 precsexlem11 27663 xppreima 31871 2ndimaxp 31872 2ndresdju 31874 xppreima2 31876 2ndpreima 31929 fsuppcurry1 31950 gsummpt2d 32201 gsumpart 32207 cnre2csqima 32891 filnetlem4 35266 |
Copyright terms: Public domain | W3C validator |