![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ⊢ 2nd :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnex 5449 | . . . . 5 ⊢ {𝑥} ∈ V | |
2 | 1 | rnex 7950 | . . . 4 ⊢ ran {𝑥} ∈ V |
3 | 2 | uniex 7776 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
4 | df-2nd 8031 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
5 | 3, 4 | fnmpti 6723 | . 2 ⊢ 2nd Fn V |
6 | 4 | rnmpt 5980 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
7 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | opex 5484 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
9 | 7, 7 | op2nda 6259 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
10 | 9 | eqcomi 2749 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
11 | sneq 4658 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
12 | 11 | rneqd 5963 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
13 | 12 | unieqd 4944 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
14 | 13 | rspceeqv 3658 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
15 | 8, 10, 14 | mp2an 691 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
17 | 16 | eqabi 2880 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
18 | 6, 17 | eqtr4i 2771 | . 2 ⊢ ran 2nd = V |
19 | df-fo 6579 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
20 | 5, 18, 19 | mpbir2an 710 | 1 ⊢ 2nd :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 {csn 4648 〈cop 4654 ∪ cuni 4931 ran crn 5701 Fn wfn 6568 –onto→wfo 6571 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-fo 6579 df-2nd 8031 |
This theorem is referenced by: br2ndeqg 8053 2ndcof 8061 df2nd2 8140 2ndconst 8142 opco2 8165 iunfo 10608 cdaf 18117 2ndf1 18264 2ndf2 18265 2ndfcl 18267 gsum2dlem2 20013 upxp 23652 uptx 23654 cnmpt2nd 23698 uniiccdif 25632 precsexlem10 28258 precsexlem11 28259 xppreima 32664 2ndimaxp 32665 2ndresdju 32667 xppreima2 32669 2ndpreima 32719 fsuppcurry1 32739 gsummpt2d 33032 gsumpart 33038 cnre2csqima 33857 filnetlem4 36347 |
Copyright terms: Public domain | W3C validator |