MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7948
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vsnex 5374 . . . . 5 {𝑥} ∈ V
21rnex 7846 . . . 4 ran {𝑥} ∈ V
32uniex 7680 . . 3 ran {𝑥} ∈ V
4 df-2nd 7928 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6629 . 2 2nd Fn V
64rnmpt 5901 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3441 . . . . 5 𝑦 ∈ V
8 opex 5407 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 6180 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2742 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4585 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5882 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4871 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413rspceeqv 3596 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
158, 10, 14mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
167, 152th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1716eqabi 2868 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
186, 17eqtr4i 2759 . 2 ran 2nd = V
19 df-fo 6492 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
205, 18, 19mpbir2an 711 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437  {csn 4575  cop 4581   cuni 4858  ran crn 5620   Fn wfn 6481  ontowfo 6484  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-fo 6492  df-2nd 7928
This theorem is referenced by:  br2ndeqg  7950  2ndcof  7958  df2nd2  8035  2ndconst  8037  opco2  8060  iunfo  10437  cdaf  17959  2ndf1  18103  2ndf2  18104  2ndfcl  18106  gsum2dlem2  19885  upxp  23539  uptx  23541  cnmpt2nd  23585  uniiccdif  25507  precsexlem10  28155  precsexlem11  28156  xppreima  32629  2ndimaxp  32630  2ndresdju  32633  xppreima2  32635  2ndpreima  32693  fsuppcurry1  32711  gsummpt2d  33036  gsumpart  33044  cnre2csqima  33945  filnetlem4  36446
  Copyright terms: Public domain W3C validator