| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo2nd | Structured version Visualization version GIF version | ||
| Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo2nd | ⊢ 2nd :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5392 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | 1 | rnex 7889 | . . . 4 ⊢ ran {𝑥} ∈ V |
| 3 | 2 | uniex 7720 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
| 4 | df-2nd 7972 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 5 | 3, 4 | fnmpti 6664 | . 2 ⊢ 2nd Fn V |
| 6 | 4 | rnmpt 5924 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 7 | vex 3454 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | opex 5427 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V | |
| 9 | 7, 7 | op2nda 6204 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
| 10 | 9 | eqcomi 2739 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
| 11 | sneq 4602 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 12 | 11 | rneqd 5905 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
| 13 | 12 | unieqd 4887 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
| 14 | 13 | rspceeqv 3614 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 15 | 8, 10, 14 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
| 16 | 7, 15 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 17 | 16 | eqabi 2864 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 18 | 6, 17 | eqtr4i 2756 | . 2 ⊢ ran 2nd = V |
| 19 | df-fo 6520 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
| 20 | 5, 18, 19 | mpbir2an 711 | 1 ⊢ 2nd :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 {csn 4592 〈cop 4598 ∪ cuni 4874 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-fo 6520 df-2nd 7972 |
| This theorem is referenced by: br2ndeqg 7994 2ndcof 8002 df2nd2 8081 2ndconst 8083 opco2 8106 iunfo 10499 cdaf 18019 2ndf1 18163 2ndf2 18164 2ndfcl 18166 gsum2dlem2 19908 upxp 23517 uptx 23519 cnmpt2nd 23563 uniiccdif 25486 precsexlem10 28125 precsexlem11 28126 xppreima 32576 2ndimaxp 32577 2ndresdju 32580 xppreima2 32582 2ndpreima 32638 fsuppcurry1 32655 gsummpt2d 32996 gsumpart 33004 cnre2csqima 33908 filnetlem4 36376 |
| Copyright terms: Public domain | W3C validator |