Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isupwlk Structured version   Visualization version   GIF version

Theorem isupwlk 48128
Description: Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtx‘𝐺)
upwlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
isupwlk ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑃,𝑘
Allowed substitution hints:   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)   𝑍(𝑘)

Proof of Theorem isupwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5111 . . 3 (𝐹(UPWalks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (UPWalks‘𝐺))
2 upwlksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 upwlksfval.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3upwlksfval 48127 . . . . 5 (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
543ad2ant1 1133 . . . 4 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
65eleq2d 2815 . . 3 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ (UPWalks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}))
71, 6bitrid 283 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}))
8 eleq1 2817 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
98adantr 480 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
10 simpr 484 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
11 fveq2 6861 . . . . . . . 8 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
1211oveq2d 7406 . . . . . . 7 (𝑓 = 𝐹 → (0...(♯‘𝑓)) = (0...(♯‘𝐹)))
1312adantr 480 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0...(♯‘𝑓)) = (0...(♯‘𝐹)))
1410, 13feq12d 6679 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝:(0...(♯‘𝑓))⟶𝑉𝑃:(0...(♯‘𝐹))⟶𝑉))
1511oveq2d 7406 . . . . . . 7 (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
1615adantr 480 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
17 fveq1 6860 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
1817fveq2d 6865 . . . . . . 7 (𝑓 = 𝐹 → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
19 fveq1 6860 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝𝑘) = (𝑃𝑘))
20 fveq1 6860 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
2119, 20preq12d 4708 . . . . . . 7 (𝑝 = 𝑃 → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2218, 21eqeqan12d 2744 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
2316, 22raleqbidv 3321 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
249, 14, 233anbi123d 1438 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
2524opelopabga 5496 . . 3 ((𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
26253adant1 1130 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
277, 26bitrd 279 1 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {cpr 4594  cop 4598   class class class wbr 5110  {copab 5172  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485  Vtxcvtx 28930  iEdgciedg 28931  UPWalkscupwlks 48125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-upwlks 48126
This theorem is referenced by:  isupwlkg  48129  upwlkwlk  48131  upgrwlkupwlk  48132  upgrisupwlkALT  48134
  Copyright terms: Public domain W3C validator