Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isupwlk Structured version   Visualization version   GIF version

Theorem isupwlk 48078
Description: Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtx‘𝐺)
upwlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
isupwlk ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑃,𝑘
Allowed substitution hints:   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)   𝑍(𝑘)

Proof of Theorem isupwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5125 . . 3 (𝐹(UPWalks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (UPWalks‘𝐺))
2 upwlksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 upwlksfval.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3upwlksfval 48077 . . . . 5 (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
543ad2ant1 1133 . . . 4 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
65eleq2d 2821 . . 3 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ (UPWalks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}))
71, 6bitrid 283 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}))
8 eleq1 2823 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
98adantr 480 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
10 simpr 484 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
11 fveq2 6881 . . . . . . . 8 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
1211oveq2d 7426 . . . . . . 7 (𝑓 = 𝐹 → (0...(♯‘𝑓)) = (0...(♯‘𝐹)))
1312adantr 480 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0...(♯‘𝑓)) = (0...(♯‘𝐹)))
1410, 13feq12d 6699 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝:(0...(♯‘𝑓))⟶𝑉𝑃:(0...(♯‘𝐹))⟶𝑉))
1511oveq2d 7426 . . . . . . 7 (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
1615adantr 480 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
17 fveq1 6880 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
1817fveq2d 6885 . . . . . . 7 (𝑓 = 𝐹 → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
19 fveq1 6880 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝𝑘) = (𝑃𝑘))
20 fveq1 6880 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
2119, 20preq12d 4722 . . . . . . 7 (𝑝 = 𝑃 → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2218, 21eqeqan12d 2750 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
2316, 22raleqbidv 3329 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
249, 14, 233anbi123d 1438 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
2524opelopabga 5513 . . 3 ((𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
26253adant1 1130 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
277, 26bitrd 279 1 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  {cpr 4608  cop 4612   class class class wbr 5124  {copab 5186  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536  Vtxcvtx 28980  iEdgciedg 28981  UPWalkscupwlks 48075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-upwlks 48076
This theorem is referenced by:  isupwlkg  48079  upwlkwlk  48081  upgrwlkupwlk  48082  upgrisupwlkALT  48084
  Copyright terms: Public domain W3C validator