Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isupwlk Structured version   Visualization version   GIF version

Theorem isupwlk 46504
Description: Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtxβ€˜πΊ)
upwlksfval.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
isupwlk ((𝐺 ∈ π‘Š ∧ 𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
Distinct variable groups:   π‘˜,𝐺   π‘˜,𝐹   𝑃,π‘˜
Allowed substitution hints:   π‘ˆ(π‘˜)   𝐼(π‘˜)   𝑉(π‘˜)   π‘Š(π‘˜)   𝑍(π‘˜)

Proof of Theorem isupwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5149 . . 3 (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ ⟨𝐹, π‘ƒβŸ© ∈ (UPWalksβ€˜πΊ))
2 upwlksfval.v . . . . . 6 𝑉 = (Vtxβ€˜πΊ)
3 upwlksfval.i . . . . . 6 𝐼 = (iEdgβ€˜πΊ)
42, 3upwlksfval 46503 . . . . 5 (𝐺 ∈ π‘Š β†’ (UPWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
543ad2ant1 1133 . . . 4 ((𝐺 ∈ π‘Š ∧ 𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (UPWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
65eleq2d 2819 . . 3 ((𝐺 ∈ π‘Š ∧ 𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (⟨𝐹, π‘ƒβŸ© ∈ (UPWalksβ€˜πΊ) ↔ ⟨𝐹, π‘ƒβŸ© ∈ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})}))
71, 6bitrid 282 . 2 ((𝐺 ∈ π‘Š ∧ 𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ ⟨𝐹, π‘ƒβŸ© ∈ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})}))
8 eleq1 2821 . . . . . 6 (𝑓 = 𝐹 β†’ (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼))
98adantr 481 . . . . 5 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼))
10 simpr 485 . . . . . 6 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ 𝑝 = 𝑃)
11 fveq2 6891 . . . . . . . 8 (𝑓 = 𝐹 β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
1211oveq2d 7424 . . . . . . 7 (𝑓 = 𝐹 β†’ (0...(β™―β€˜π‘“)) = (0...(β™―β€˜πΉ)))
1312adantr 481 . . . . . 6 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (0...(β™―β€˜π‘“)) = (0...(β™―β€˜πΉ)))
1410, 13feq12d 6705 . . . . 5 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ↔ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰))
1511oveq2d 7424 . . . . . . 7 (𝑓 = 𝐹 β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜πΉ)))
1615adantr 481 . . . . . 6 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (0..^(β™―β€˜π‘“)) = (0..^(β™―β€˜πΉ)))
17 fveq1 6890 . . . . . . . 8 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘˜) = (πΉβ€˜π‘˜))
1817fveq2d 6895 . . . . . . 7 (𝑓 = 𝐹 β†’ (πΌβ€˜(π‘“β€˜π‘˜)) = (πΌβ€˜(πΉβ€˜π‘˜)))
19 fveq1 6890 . . . . . . . 8 (𝑝 = 𝑃 β†’ (π‘β€˜π‘˜) = (π‘ƒβ€˜π‘˜))
20 fveq1 6890 . . . . . . . 8 (𝑝 = 𝑃 β†’ (π‘β€˜(π‘˜ + 1)) = (π‘ƒβ€˜(π‘˜ + 1)))
2119, 20preq12d 4745 . . . . . . 7 (𝑝 = 𝑃 β†’ {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})
2218, 21eqeqan12d 2746 . . . . . 6 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} ↔ (πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
2316, 22raleqbidv 3342 . . . . 5 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} ↔ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
249, 14, 233anbi123d 1436 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
2524opelopabga 5533 . . 3 ((𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (⟨𝐹, π‘ƒβŸ© ∈ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})} ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
26253adant1 1130 . 2 ((𝐺 ∈ π‘Š ∧ 𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (⟨𝐹, π‘ƒβŸ© ∈ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})} ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
277, 26bitrd 278 1 ((𝐺 ∈ π‘Š ∧ 𝐹 ∈ π‘ˆ ∧ 𝑃 ∈ 𝑍) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {cpr 4630  βŸ¨cop 4634   class class class wbr 5148  {copab 5210  dom cdm 5676  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  0cc0 11109  1c1 11110   + caddc 11112  ...cfz 13483  ..^cfzo 13626  β™―chash 14289  Word cword 14463  Vtxcvtx 28253  iEdgciedg 28254  UPWalkscupwlks 46501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-upwlks 46502
This theorem is referenced by:  isupwlkg  46505  upwlkwlk  46507  upgrwlkupwlk  46508  upgrisupwlkALT  46510
  Copyright terms: Public domain W3C validator