![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isupwlk | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
Ref | Expression |
---|---|
upwlksfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upwlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
isupwlk | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . . 3 ⊢ (𝐹(UPWalks‘𝐺)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (UPWalks‘𝐺)) | |
2 | upwlksfval.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | upwlksfval.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | 2, 3 | upwlksfval 47979 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
5 | 4 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
6 | 5 | eleq2d 2825 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (〈𝐹, 𝑃〉 ∈ (UPWalks‘𝐺) ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})})) |
7 | 1, 6 | bitrid 283 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})})) |
8 | eleq1 2827 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼)) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼)) |
10 | simpr 484 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
11 | fveq2 6907 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
12 | 11 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (0...(♯‘𝑓)) = (0...(♯‘𝐹))) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (0...(♯‘𝑓)) = (0...(♯‘𝐹))) |
14 | 10, 13 | feq12d 6725 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝:(0...(♯‘𝑓))⟶𝑉 ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
15 | 11 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
17 | fveq1 6906 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) | |
18 | 17 | fveq2d 6911 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝐼‘(𝑓‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
19 | fveq1 6906 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝‘𝑘) = (𝑃‘𝑘)) | |
20 | fveq1 6906 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) | |
21 | 19, 20 | preq12d 4746 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
22 | 18, 21 | eqeqan12d 2749 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
23 | 16, 22 | raleqbidv 3344 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
24 | 9, 14, 23 | 3anbi123d 1435 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
25 | 24 | opelopabga 5543 | . . 3 ⊢ ((𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
26 | 25 | 3adant1 1129 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
27 | 7, 26 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {cpr 4633 〈cop 4637 class class class wbr 5148 {copab 5210 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 Vtxcvtx 29028 iEdgciedg 29029 UPWalkscupwlks 47977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-upwlks 47978 |
This theorem is referenced by: isupwlkg 47981 upwlkwlk 47983 upgrwlkupwlk 47984 upgrisupwlkALT 47986 |
Copyright terms: Public domain | W3C validator |