Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fvfmla0 Structured version   Visualization version   GIF version

Theorem satfv0fvfmla0 33275
Description: The value of the satisfaction predicate as function over a wff code at . (Contributed by AV, 2-Nov-2023.)
Hypothesis
Ref Expression
satfv0fv.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0fvfmla0 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Distinct variable groups:   𝐸,𝑎   𝑀,𝑎   𝑋,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem satfv0fvfmla0
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 33233 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
2 satfv0fv.s . . . . . 6 𝑆 = (𝑀 Sat 𝐸)
32fveq1i 6757 . . . . 5 (𝑆‘∅) = ((𝑀 Sat 𝐸)‘∅)
43funeqi 6439 . . . 4 (Fun (𝑆‘∅) ↔ Fun ((𝑀 Sat 𝐸)‘∅))
51, 4sylibr 233 . . 3 ((𝑀𝑉𝐸𝑊) → Fun (𝑆‘∅))
653adant3 1130 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → Fun (𝑆‘∅))
7 fmla0 33244 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
87eleq2i 2830 . . . . . . 7 (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
9 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑋 = (𝑖𝑔𝑗)))
1092rexbidv 3228 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
1110elrab 3617 . . . . . . 7 (𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
128, 11bitri 274 . . . . . 6 (𝑋 ∈ (Fmla‘∅) ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
13 simpr 484 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → 𝑋 = (𝑖𝑔𝑗))
14 goel 33209 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
1514eqeq2d 2749 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) ↔ 𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
16 2fveq3 6761 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
17 0ex 5226 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ V
18 opex 5373 . . . . . . . . . . . . . . . . . . 19 𝑖, 𝑗⟩ ∈ V
1917, 18op2nd 7813 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩) = ⟨𝑖, 𝑗
2019fveq2i 6759 . . . . . . . . . . . . . . . . 17 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (1st ‘⟨𝑖, 𝑗⟩)
21 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑖 ∈ V
22 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑗 ∈ V
2321, 22op1st 7812 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑖, 𝑗⟩) = 𝑖
2420, 23eqtri 2766 . . . . . . . . . . . . . . . 16 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑖
2516, 24eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = 𝑖)
2625fveq2d 6760 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(1st ‘(2nd𝑋))) = (𝑎𝑖))
27 2fveq3 6761 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
2819fveq2i 6759 . . . . . . . . . . . . . . . . 17 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (2nd ‘⟨𝑖, 𝑗⟩)
2921, 22op2nd 7813 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑖, 𝑗⟩) = 𝑗
3028, 29eqtri 2766 . . . . . . . . . . . . . . . 16 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑗
3127, 30eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = 𝑗)
3231fveq2d 6760 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(2nd ‘(2nd𝑋))) = (𝑎𝑗))
3326, 32breq12d 5083 . . . . . . . . . . . . 13 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3415, 33syl6bi 252 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗))))
3534imp 406 . . . . . . . . . . 11 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3635rabbidv 3404 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
3713, 36jca 511 . . . . . . . . 9 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
3837ex 412 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
3938reximdva 3202 . . . . . . 7 (𝑖 ∈ ω → (∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4039reximia 3172 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4112, 40simplbiim 504 . . . . 5 (𝑋 ∈ (Fmla‘∅) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
42413ad2ant3 1133 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
43 simp3 1136 . . . . 5 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ (Fmla‘∅))
44 ovex 7288 . . . . . 6 (𝑀m ω) ∈ V
4544rabex 5251 . . . . 5 {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V
46 eqeq1 2742 . . . . . . . 8 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
479, 46bi2anan9 635 . . . . . . 7 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
48472rexbidv 3228 . . . . . 6 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4948opelopabga 5439 . . . . 5 ((𝑋 ∈ (Fmla‘∅) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5043, 45, 49sylancl 585 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5142, 50mpbird 256 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
522satfv0 33220 . . . . 5 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
5352eleq2d 2824 . . . 4 ((𝑀𝑉𝐸𝑊) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
54533adant3 1130 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
5551, 54mpbird 256 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅))
56 funopfv 6803 . 2 (Fun (𝑆‘∅) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}))
576, 55, 56sylc 65 1 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  c0 4253  cop 4564   class class class wbr 5070  {copab 5132  Fun wfun 6412  cfv 6418  (class class class)co 7255  ωcom 7687  1st c1st 7802  2nd c2nd 7803  m cmap 8573  𝑔cgoe 33195   Sat csat 33198  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-map 8575  df-goel 33202  df-sat 33205  df-fmla 33207
This theorem is referenced by:  satefvfmla0  33280
  Copyright terms: Public domain W3C validator