Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fvfmla0 Structured version   Visualization version   GIF version

Theorem satfv0fvfmla0 34959
Description: The value of the satisfaction predicate as function over a wff code at . (Contributed by AV, 2-Nov-2023.)
Hypothesis
Ref Expression
satfv0fv.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0fvfmla0 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Distinct variable groups:   𝐸,𝑎   𝑀,𝑎   𝑋,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem satfv0fvfmla0
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 34917 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
2 satfv0fv.s . . . . . 6 𝑆 = (𝑀 Sat 𝐸)
32fveq1i 6892 . . . . 5 (𝑆‘∅) = ((𝑀 Sat 𝐸)‘∅)
43funeqi 6568 . . . 4 (Fun (𝑆‘∅) ↔ Fun ((𝑀 Sat 𝐸)‘∅))
51, 4sylibr 233 . . 3 ((𝑀𝑉𝐸𝑊) → Fun (𝑆‘∅))
653adant3 1130 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → Fun (𝑆‘∅))
7 fmla0 34928 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
87eleq2i 2820 . . . . . . 7 (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
9 eqeq1 2731 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑋 = (𝑖𝑔𝑗)))
1092rexbidv 3214 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
1110elrab 3680 . . . . . . 7 (𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
128, 11bitri 275 . . . . . 6 (𝑋 ∈ (Fmla‘∅) ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
13 simpr 484 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → 𝑋 = (𝑖𝑔𝑗))
14 goel 34893 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
1514eqeq2d 2738 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) ↔ 𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
16 2fveq3 6896 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
17 0ex 5301 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ V
18 opex 5460 . . . . . . . . . . . . . . . . . . 19 𝑖, 𝑗⟩ ∈ V
1917, 18op2nd 7996 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩) = ⟨𝑖, 𝑗
2019fveq2i 6894 . . . . . . . . . . . . . . . . 17 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (1st ‘⟨𝑖, 𝑗⟩)
21 vex 3473 . . . . . . . . . . . . . . . . . 18 𝑖 ∈ V
22 vex 3473 . . . . . . . . . . . . . . . . . 18 𝑗 ∈ V
2321, 22op1st 7995 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑖, 𝑗⟩) = 𝑖
2420, 23eqtri 2755 . . . . . . . . . . . . . . . 16 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑖
2516, 24eqtrdi 2783 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = 𝑖)
2625fveq2d 6895 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(1st ‘(2nd𝑋))) = (𝑎𝑖))
27 2fveq3 6896 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
2819fveq2i 6894 . . . . . . . . . . . . . . . . 17 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (2nd ‘⟨𝑖, 𝑗⟩)
2921, 22op2nd 7996 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑖, 𝑗⟩) = 𝑗
3028, 29eqtri 2755 . . . . . . . . . . . . . . . 16 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑗
3127, 30eqtrdi 2783 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = 𝑗)
3231fveq2d 6895 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(2nd ‘(2nd𝑋))) = (𝑎𝑗))
3326, 32breq12d 5155 . . . . . . . . . . . . 13 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3415, 33biimtrdi 252 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗))))
3534imp 406 . . . . . . . . . . 11 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3635rabbidv 3435 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
3713, 36jca 511 . . . . . . . . 9 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
3837ex 412 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
3938reximdva 3163 . . . . . . 7 (𝑖 ∈ ω → (∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4039reximia 3076 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4112, 40simplbiim 504 . . . . 5 (𝑋 ∈ (Fmla‘∅) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
42413ad2ant3 1133 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
43 simp3 1136 . . . . 5 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ (Fmla‘∅))
44 ovex 7447 . . . . . 6 (𝑀m ω) ∈ V
4544rabex 5328 . . . . 5 {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V
46 eqeq1 2731 . . . . . . . 8 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
479, 46bi2anan9 637 . . . . . . 7 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
48472rexbidv 3214 . . . . . 6 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4948opelopabga 5529 . . . . 5 ((𝑋 ∈ (Fmla‘∅) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5043, 45, 49sylancl 585 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5142, 50mpbird 257 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
522satfv0 34904 . . . . 5 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
5352eleq2d 2814 . . . 4 ((𝑀𝑉𝐸𝑊) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
54533adant3 1130 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
5551, 54mpbird 257 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅))
56 funopfv 6943 . 2 (Fun (𝑆‘∅) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}))
576, 55, 56sylc 65 1 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3065  {crab 3427  Vcvv 3469  c0 4318  cop 4630   class class class wbr 5142  {copab 5204  Fun wfun 6536  cfv 6542  (class class class)co 7414  ωcom 7864  1st c1st 7985  2nd c2nd 7986  m cmap 8836  𝑔cgoe 34879   Sat csat 34882  Fmlacfmla 34883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-map 8838  df-goel 34886  df-sat 34889  df-fmla 34891
This theorem is referenced by:  satefvfmla0  34964
  Copyright terms: Public domain W3C validator