Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fvfmla0 Structured version   Visualization version   GIF version

Theorem satfv0fvfmla0 33375
Description: The value of the satisfaction predicate as function over a wff code at . (Contributed by AV, 2-Nov-2023.)
Hypothesis
Ref Expression
satfv0fv.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0fvfmla0 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Distinct variable groups:   𝐸,𝑎   𝑀,𝑎   𝑋,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem satfv0fvfmla0
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 33333 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
2 satfv0fv.s . . . . . 6 𝑆 = (𝑀 Sat 𝐸)
32fveq1i 6775 . . . . 5 (𝑆‘∅) = ((𝑀 Sat 𝐸)‘∅)
43funeqi 6455 . . . 4 (Fun (𝑆‘∅) ↔ Fun ((𝑀 Sat 𝐸)‘∅))
51, 4sylibr 233 . . 3 ((𝑀𝑉𝐸𝑊) → Fun (𝑆‘∅))
653adant3 1131 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → Fun (𝑆‘∅))
7 fmla0 33344 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
87eleq2i 2830 . . . . . . 7 (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
9 eqeq1 2742 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑋 = (𝑖𝑔𝑗)))
1092rexbidv 3229 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
1110elrab 3624 . . . . . . 7 (𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
128, 11bitri 274 . . . . . 6 (𝑋 ∈ (Fmla‘∅) ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
13 simpr 485 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → 𝑋 = (𝑖𝑔𝑗))
14 goel 33309 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
1514eqeq2d 2749 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) ↔ 𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
16 2fveq3 6779 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
17 0ex 5231 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ V
18 opex 5379 . . . . . . . . . . . . . . . . . . 19 𝑖, 𝑗⟩ ∈ V
1917, 18op2nd 7840 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩) = ⟨𝑖, 𝑗
2019fveq2i 6777 . . . . . . . . . . . . . . . . 17 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (1st ‘⟨𝑖, 𝑗⟩)
21 vex 3436 . . . . . . . . . . . . . . . . . 18 𝑖 ∈ V
22 vex 3436 . . . . . . . . . . . . . . . . . 18 𝑗 ∈ V
2321, 22op1st 7839 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑖, 𝑗⟩) = 𝑖
2420, 23eqtri 2766 . . . . . . . . . . . . . . . 16 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑖
2516, 24eqtrdi 2794 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = 𝑖)
2625fveq2d 6778 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(1st ‘(2nd𝑋))) = (𝑎𝑖))
27 2fveq3 6779 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
2819fveq2i 6777 . . . . . . . . . . . . . . . . 17 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (2nd ‘⟨𝑖, 𝑗⟩)
2921, 22op2nd 7840 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑖, 𝑗⟩) = 𝑗
3028, 29eqtri 2766 . . . . . . . . . . . . . . . 16 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑗
3127, 30eqtrdi 2794 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = 𝑗)
3231fveq2d 6778 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(2nd ‘(2nd𝑋))) = (𝑎𝑗))
3326, 32breq12d 5087 . . . . . . . . . . . . 13 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3415, 33syl6bi 252 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗))))
3534imp 407 . . . . . . . . . . 11 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3635rabbidv 3414 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
3713, 36jca 512 . . . . . . . . 9 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
3837ex 413 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
3938reximdva 3203 . . . . . . 7 (𝑖 ∈ ω → (∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4039reximia 3176 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4112, 40simplbiim 505 . . . . 5 (𝑋 ∈ (Fmla‘∅) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
42413ad2ant3 1134 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
43 simp3 1137 . . . . 5 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ (Fmla‘∅))
44 ovex 7308 . . . . . 6 (𝑀m ω) ∈ V
4544rabex 5256 . . . . 5 {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V
46 eqeq1 2742 . . . . . . . 8 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
479, 46bi2anan9 636 . . . . . . 7 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
48472rexbidv 3229 . . . . . 6 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4948opelopabga 5446 . . . . 5 ((𝑋 ∈ (Fmla‘∅) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5043, 45, 49sylancl 586 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5142, 50mpbird 256 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
522satfv0 33320 . . . . 5 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
5352eleq2d 2824 . . . 4 ((𝑀𝑉𝐸𝑊) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
54533adant3 1131 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
5551, 54mpbird 256 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅))
56 funopfv 6821 . 2 (Fun (𝑆‘∅) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}))
576, 55, 56sylc 65 1 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432  c0 4256  cop 4567   class class class wbr 5074  {copab 5136  Fun wfun 6427  cfv 6433  (class class class)co 7275  ωcom 7712  1st c1st 7829  2nd c2nd 7830  m cmap 8615  𝑔cgoe 33295   Sat csat 33298  Fmlacfmla 33299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-map 8617  df-goel 33302  df-sat 33305  df-fmla 33307
This theorem is referenced by:  satefvfmla0  33380
  Copyright terms: Public domain W3C validator