Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fvfmla0 Structured version   Visualization version   GIF version

Theorem satfv0fvfmla0 35468
Description: The value of the satisfaction predicate as function over a wff code at . (Contributed by AV, 2-Nov-2023.)
Hypothesis
Ref Expression
satfv0fv.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfv0fvfmla0 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Distinct variable groups:   𝐸,𝑎   𝑀,𝑎   𝑋,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑉(𝑎)   𝑊(𝑎)

Proof of Theorem satfv0fvfmla0
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 35426 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
2 satfv0fv.s . . . . . 6 𝑆 = (𝑀 Sat 𝐸)
32fveq1i 6832 . . . . 5 (𝑆‘∅) = ((𝑀 Sat 𝐸)‘∅)
43funeqi 6510 . . . 4 (Fun (𝑆‘∅) ↔ Fun ((𝑀 Sat 𝐸)‘∅))
51, 4sylibr 234 . . 3 ((𝑀𝑉𝐸𝑊) → Fun (𝑆‘∅))
653adant3 1132 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → Fun (𝑆‘∅))
7 fmla0 35437 . . . . . . . 8 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
87eleq2i 2825 . . . . . . 7 (𝑋 ∈ (Fmla‘∅) ↔ 𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
9 eqeq1 2737 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑋 = (𝑖𝑔𝑗)))
1092rexbidv 3199 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
1110elrab 3644 . . . . . . 7 (𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
128, 11bitri 275 . . . . . 6 (𝑋 ∈ (Fmla‘∅) ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗)))
13 simpr 484 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → 𝑋 = (𝑖𝑔𝑗))
14 goel 35402 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
1514eqeq2d 2744 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) ↔ 𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
16 2fveq3 6836 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
17 0ex 5249 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ V
18 opex 5409 . . . . . . . . . . . . . . . . . . 19 𝑖, 𝑗⟩ ∈ V
1917, 18op2nd 7939 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩) = ⟨𝑖, 𝑗
2019fveq2i 6834 . . . . . . . . . . . . . . . . 17 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (1st ‘⟨𝑖, 𝑗⟩)
21 vex 3442 . . . . . . . . . . . . . . . . . 18 𝑖 ∈ V
22 vex 3442 . . . . . . . . . . . . . . . . . 18 𝑗 ∈ V
2321, 22op1st 7938 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑖, 𝑗⟩) = 𝑖
2420, 23eqtri 2756 . . . . . . . . . . . . . . . 16 (1st ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑖
2516, 24eqtrdi 2784 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (1st ‘(2nd𝑋)) = 𝑖)
2625fveq2d 6835 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(1st ‘(2nd𝑋))) = (𝑎𝑖))
27 2fveq3 6836 . . . . . . . . . . . . . . . 16 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)))
2819fveq2i 6834 . . . . . . . . . . . . . . . . 17 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = (2nd ‘⟨𝑖, 𝑗⟩)
2921, 22op2nd 7939 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑖, 𝑗⟩) = 𝑗
3028, 29eqtri 2756 . . . . . . . . . . . . . . . 16 (2nd ‘(2nd ‘⟨∅, ⟨𝑖, 𝑗⟩⟩)) = 𝑗
3127, 30eqtrdi 2784 . . . . . . . . . . . . . . 15 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (2nd ‘(2nd𝑋)) = 𝑗)
3231fveq2d 6835 . . . . . . . . . . . . . 14 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑎‘(2nd ‘(2nd𝑋))) = (𝑎𝑗))
3326, 32breq12d 5108 . . . . . . . . . . . . 13 (𝑋 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3415, 33biimtrdi 253 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗))))
3534imp 406 . . . . . . . . . . 11 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → ((𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋))) ↔ (𝑎𝑖)𝐸(𝑎𝑗)))
3635rabbidv 3404 . . . . . . . . . 10 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})
3713, 36jca 511 . . . . . . . . 9 (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖𝑔𝑗)) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
3837ex 412 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖𝑔𝑗) → (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
3938reximdva 3147 . . . . . . 7 (𝑖 ∈ ω → (∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4039reximia 3069 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
4112, 40simplbiim 504 . . . . 5 (𝑋 ∈ (Fmla‘∅) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
42413ad2ant3 1135 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
43 simp3 1138 . . . . 5 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈ (Fmla‘∅))
44 ovex 7388 . . . . . 6 (𝑀m ω) ∈ V
4544rabex 5281 . . . . 5 {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V
46 eqeq1 2737 . . . . . . . 8 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)} ↔ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}))
479, 46bi2anan9 638 . . . . . . 7 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
48472rexbidv 3199 . . . . . 6 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
4948opelopabga 5478 . . . . 5 ((𝑋 ∈ (Fmla‘∅) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} ∈ V) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5043, 45, 49sylancl 586 . . . 4 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))} = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})))
5142, 50mpbird 257 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
522satfv0 35413 . . . . 5 ((𝑀𝑉𝐸𝑊) → (𝑆‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})})
5352eleq2d 2819 . . . 4 ((𝑀𝑉𝐸𝑊) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
54533adant3 1132 . . 3 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (𝑎𝑖)𝐸(𝑎𝑗)})}))
5551, 54mpbird 257 . 2 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅))
56 funopfv 6880 . 2 (Fun (𝑆‘∅) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}⟩ ∈ (𝑆‘∅) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))}))
576, 55, 56sylc 65 1 ((𝑀𝑉𝐸𝑊𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (𝑎‘(1st ‘(2nd𝑋)))𝐸(𝑎‘(2nd ‘(2nd𝑋)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3058  {crab 3397  Vcvv 3438  c0 4284  cop 4583   class class class wbr 5095  {copab 5157  Fun wfun 6483  cfv 6489  (class class class)co 7355  ωcom 7805  1st c1st 7928  2nd c2nd 7929  m cmap 8759  𝑔cgoe 35388   Sat csat 35391  Fmlacfmla 35392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-map 8761  df-goel 35395  df-sat 35398  df-fmla 35400
This theorem is referenced by:  satefvfmla0  35473
  Copyright terms: Public domain W3C validator