Step | Hyp | Ref
| Expression |
1 | | satfv0fun 33333 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘∅)) |
2 | | satfv0fv.s |
. . . . . 6
⊢ 𝑆 = (𝑀 Sat 𝐸) |
3 | 2 | fveq1i 6775 |
. . . . 5
⊢ (𝑆‘∅) = ((𝑀 Sat 𝐸)‘∅) |
4 | 3 | funeqi 6455 |
. . . 4
⊢ (Fun
(𝑆‘∅) ↔
Fun ((𝑀 Sat 𝐸)‘∅)) |
5 | 1, 4 | sylibr 233 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun (𝑆‘∅)) |
6 | 5 | 3adant3 1131 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) → Fun
(𝑆‘∅)) |
7 | | fmla0 33344 |
. . . . . . . 8
⊢
(Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} |
8 | 7 | eleq2i 2830 |
. . . . . . 7
⊢ (𝑋 ∈ (Fmla‘∅)
↔ 𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)}) |
9 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑥 = (𝑖∈𝑔𝑗) ↔ 𝑋 = (𝑖∈𝑔𝑗))) |
10 | 9 | 2rexbidv 3229 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖∈𝑔𝑗))) |
11 | 10 | elrab 3624 |
. . . . . . 7
⊢ (𝑋 ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖∈𝑔𝑗)} ↔ (𝑋 ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑋 = (𝑖∈𝑔𝑗))) |
12 | 8, 11 | bitri 274 |
. . . . . 6
⊢ (𝑋 ∈ (Fmla‘∅)
↔ (𝑋 ∈ V ∧
∃𝑖 ∈ ω
∃𝑗 ∈ ω
𝑋 = (𝑖∈𝑔𝑗))) |
13 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖∈𝑔𝑗)) → 𝑋 = (𝑖∈𝑔𝑗)) |
14 | | goel 33309 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖∈𝑔𝑗) = 〈∅, 〈𝑖, 𝑗〉〉) |
15 | 14 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖∈𝑔𝑗) ↔ 𝑋 = 〈∅, 〈𝑖, 𝑗〉〉)) |
16 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 = 〈∅, 〈𝑖, 𝑗〉〉 → (1st
‘(2nd ‘𝑋)) = (1st ‘(2nd
‘〈∅, 〈𝑖, 𝑗〉〉))) |
17 | | 0ex 5231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∅
∈ V |
18 | | opex 5379 |
. . . . . . . . . . . . . . . . . . 19
⊢
〈𝑖, 𝑗〉 ∈ V |
19 | 17, 18 | op2nd 7840 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈∅, 〈𝑖, 𝑗〉〉) = 〈𝑖, 𝑗〉 |
20 | 19 | fveq2i 6777 |
. . . . . . . . . . . . . . . . 17
⊢
(1st ‘(2nd ‘〈∅, 〈𝑖, 𝑗〉〉)) = (1st
‘〈𝑖, 𝑗〉) |
21 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑖 ∈ V |
22 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑗 ∈ V |
23 | 21, 22 | op1st 7839 |
. . . . . . . . . . . . . . . . 17
⊢
(1st ‘〈𝑖, 𝑗〉) = 𝑖 |
24 | 20, 23 | eqtri 2766 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘(2nd ‘〈∅, 〈𝑖, 𝑗〉〉)) = 𝑖 |
25 | 16, 24 | eqtrdi 2794 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = 〈∅, 〈𝑖, 𝑗〉〉 → (1st
‘(2nd ‘𝑋)) = 𝑖) |
26 | 25 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 〈∅, 〈𝑖, 𝑗〉〉 → (𝑎‘(1st ‘(2nd
‘𝑋))) = (𝑎‘𝑖)) |
27 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 = 〈∅, 〈𝑖, 𝑗〉〉 → (2nd
‘(2nd ‘𝑋)) = (2nd ‘(2nd
‘〈∅, 〈𝑖, 𝑗〉〉))) |
28 | 19 | fveq2i 6777 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘(2nd ‘〈∅, 〈𝑖, 𝑗〉〉)) = (2nd
‘〈𝑖, 𝑗〉) |
29 | 21, 22 | op2nd 7840 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘〈𝑖, 𝑗〉) = 𝑗 |
30 | 28, 29 | eqtri 2766 |
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘(2nd ‘〈∅, 〈𝑖, 𝑗〉〉)) = 𝑗 |
31 | 27, 30 | eqtrdi 2794 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = 〈∅, 〈𝑖, 𝑗〉〉 → (2nd
‘(2nd ‘𝑋)) = 𝑗) |
32 | 31 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 〈∅, 〈𝑖, 𝑗〉〉 → (𝑎‘(2nd ‘(2nd
‘𝑋))) = (𝑎‘𝑗)) |
33 | 26, 32 | breq12d 5087 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 〈∅, 〈𝑖, 𝑗〉〉 → ((𝑎‘(1st ‘(2nd
‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋))) ↔ (𝑎‘𝑖)𝐸(𝑎‘𝑗))) |
34 | 15, 33 | syl6bi 252 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖∈𝑔𝑗) → ((𝑎‘(1st ‘(2nd
‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋))) ↔ (𝑎‘𝑖)𝐸(𝑎‘𝑗)))) |
35 | 34 | imp 407 |
. . . . . . . . . . 11
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖∈𝑔𝑗)) → ((𝑎‘(1st ‘(2nd
‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋))) ↔ (𝑎‘𝑖)𝐸(𝑎‘𝑗))) |
36 | 35 | rabbidv 3414 |
. . . . . . . . . 10
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖∈𝑔𝑗)) → {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) |
37 | 13, 36 | jca 512 |
. . . . . . . . 9
⊢ (((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑋 = (𝑖∈𝑔𝑗)) → (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) |
38 | 37 | ex 413 |
. . . . . . . 8
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑋 = (𝑖∈𝑔𝑗) → (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) |
39 | 38 | reximdva 3203 |
. . . . . . 7
⊢ (𝑖 ∈ ω →
(∃𝑗 ∈ ω
𝑋 = (𝑖∈𝑔𝑗) → ∃𝑗 ∈ ω (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) |
40 | 39 | reximia 3176 |
. . . . . 6
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω 𝑋 = (𝑖∈𝑔𝑗) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) |
41 | 12, 40 | simplbiim 505 |
. . . . 5
⊢ (𝑋 ∈ (Fmla‘∅)
→ ∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) |
42 | 41 | 3ad2ant3 1134 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) →
∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) |
43 | | simp3 1137 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) → 𝑋 ∈
(Fmla‘∅)) |
44 | | ovex 7308 |
. . . . . 6
⊢ (𝑀 ↑m ω)
∈ V |
45 | 44 | rabex 5256 |
. . . . 5
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} ∈
V |
46 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})) |
47 | 9, 46 | bi2anan9 636 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}) →
((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) |
48 | 47 | 2rexbidv 3229 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}) →
(∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) |
49 | 48 | opelopabga 5446 |
. . . . 5
⊢ ((𝑋 ∈ (Fmla‘∅)
∧ {𝑎 ∈ (𝑀 ↑m ω)
∣ (𝑎‘(1st ‘(2nd
‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} ∈ V)
→ (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) |
50 | 43, 45, 49 | sylancl 586 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) →
(〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑋 = (𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)}))) |
51 | 42, 50 | mpbird 256 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) →
〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) |
52 | 2 | satfv0 33320 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑆‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})}) |
53 | 52 | eleq2d 2824 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
(𝑆‘∅) ↔
〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})) |
54 | 53 | 3adant3 1131 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) →
(〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
(𝑆‘∅) ↔
〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘𝑖)𝐸(𝑎‘𝑗)})})) |
55 | 51, 54 | mpbird 256 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) →
〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
(𝑆‘∅)) |
56 | | funopfv 6821 |
. 2
⊢ (Fun
(𝑆‘∅) →
(〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}〉 ∈
(𝑆‘∅) →
((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))})) |
57 | 6, 55, 56 | sylc 65 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑋 ∈ (Fmla‘∅)) → ((𝑆‘∅)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (𝑎‘(1st
‘(2nd ‘𝑋)))𝐸(𝑎‘(2nd ‘(2nd
‘𝑋)))}) |