![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcart | Structured version Visualization version GIF version |
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brcart.1 | ⊢ 𝐴 ∈ V |
brcart.2 | ⊢ 𝐵 ∈ V |
brcart.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
brcart | ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5121 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | brcart.3 | . 2 ⊢ 𝐶 ∈ V | |
3 | df-cart 32476 | . 2 ⊢ Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) | |
4 | brcart.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | brcart.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | opelvv 5349 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
7 | brxp 5356 | . . 3 ⊢ (〈𝐴, 𝐵〉((V × V) × V)𝐶 ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ 𝐶 ∈ V)) | |
8 | 6, 2, 7 | mpbir2an 703 | . 2 ⊢ 〈𝐴, 𝐵〉((V × V) × V)𝐶 |
9 | 3anass 1117 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵))) | |
10 | 4 | epeli 5225 | . . . . . . 7 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
11 | 5 | epeli 5225 | . . . . . . 7 ⊢ (𝑧 E 𝐵 ↔ 𝑧 ∈ 𝐵) |
12 | 10, 11 | anbi12i 621 | . . . . . 6 ⊢ ((𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
13 | 12 | anbi2i 617 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
14 | 9, 13 | bitri 267 | . . . 4 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
15 | 14 | 2exbii 1945 | . . 3 ⊢ (∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
16 | vex 3386 | . . . 4 ⊢ 𝑥 ∈ V | |
17 | 16, 4, 5 | brpprod3b 32498 | . . 3 ⊢ (𝑥pprod( E , E )〈𝐴, 𝐵〉 ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) |
18 | elxp 5333 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) | |
19 | 15, 17, 18 | 3bitr4ri 296 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )〈𝐴, 𝐵〉) |
20 | 1, 2, 3, 8, 19 | brtxpsd3 32507 | 1 ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∃wex 1875 ∈ wcel 2157 Vcvv 3383 〈cop 4372 class class class wbr 4841 E cep 5222 × cxp 5308 pprodcpprod 32442 Cartccart 32452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-symdif 4039 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-eprel 5223 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fo 6105 df-fv 6107 df-1st 7399 df-2nd 7400 df-txp 32465 df-pprod 32466 df-cart 32476 |
This theorem is referenced by: brimg 32548 brrestrict 32560 |
Copyright terms: Public domain | W3C validator |