Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcart | Structured version Visualization version GIF version |
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brcart.1 | ⊢ 𝐴 ∈ V |
brcart.2 | ⊢ 𝐵 ∈ V |
brcart.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
brcart | ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5382 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | brcart.3 | . 2 ⊢ 𝐶 ∈ V | |
3 | df-cart 34195 | . 2 ⊢ Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) | |
4 | brcart.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | brcart.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | opelvv 5630 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
7 | brxp 5638 | . . 3 ⊢ (〈𝐴, 𝐵〉((V × V) × V)𝐶 ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ 𝐶 ∈ V)) | |
8 | 6, 2, 7 | mpbir2an 707 | . 2 ⊢ 〈𝐴, 𝐵〉((V × V) × V)𝐶 |
9 | 3anass 1093 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵))) | |
10 | 4 | epeli 5499 | . . . . . . 7 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
11 | 5 | epeli 5499 | . . . . . . 7 ⊢ (𝑧 E 𝐵 ↔ 𝑧 ∈ 𝐵) |
12 | 10, 11 | anbi12i 626 | . . . . . 6 ⊢ ((𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
13 | 12 | anbi2i 622 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
14 | 9, 13 | bitri 274 | . . . 4 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
15 | 14 | 2exbii 1847 | . . 3 ⊢ (∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
16 | vex 3438 | . . . 4 ⊢ 𝑥 ∈ V | |
17 | 16, 4, 5 | brpprod3b 34217 | . . 3 ⊢ (𝑥pprod( E , E )〈𝐴, 𝐵〉 ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) |
18 | elxp 5614 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) | |
19 | 15, 17, 18 | 3bitr4ri 303 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )〈𝐴, 𝐵〉) |
20 | 1, 2, 3, 8, 19 | brtxpsd3 34226 | 1 ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∃wex 1777 ∈ wcel 2101 Vcvv 3434 〈cop 4570 class class class wbr 5077 E cep 5496 × cxp 5589 pprodcpprod 34161 Cartccart 34171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-symdif 4179 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-eprel 5497 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-fo 6453 df-fv 6455 df-1st 7851 df-2nd 7852 df-txp 34184 df-pprod 34185 df-cart 34195 |
This theorem is referenced by: brimg 34267 brrestrict 34279 |
Copyright terms: Public domain | W3C validator |