Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcart Structured version   Visualization version   GIF version

Theorem brcart 35920
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcart.1 𝐴 ∈ V
brcart.2 𝐵 ∈ V
brcart.3 𝐶 ∈ V
Assertion
Ref Expression
brcart (⟨𝐴, 𝐵⟩Cart𝐶𝐶 = (𝐴 × 𝐵))

Proof of Theorem brcart
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5424 . 2 𝐴, 𝐵⟩ ∈ V
2 brcart.3 . 2 𝐶 ∈ V
3 df-cart 35853 . 2 Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V)))
4 brcart.1 . . . 4 𝐴 ∈ V
5 brcart.2 . . . 4 𝐵 ∈ V
64, 5opelvv 5678 . . 3 𝐴, 𝐵⟩ ∈ (V × V)
7 brxp 5687 . . 3 (⟨𝐴, 𝐵⟩((V × V) × V)𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ 𝐶 ∈ V))
86, 2, 7mpbir2an 711 . 2 𝐴, 𝐵⟩((V × V) × V)𝐶
9 3anass 1094 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 E 𝐴𝑧 E 𝐵)))
104epeli 5540 . . . . . . 7 (𝑦 E 𝐴𝑦𝐴)
115epeli 5540 . . . . . . 7 (𝑧 E 𝐵𝑧𝐵)
1210, 11anbi12i 628 . . . . . 6 ((𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑦𝐴𝑧𝐵))
1312anbi2i 623 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 E 𝐴𝑧 E 𝐵)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
149, 13bitri 275 . . . 4 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
15142exbii 1849 . . 3 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
16 vex 3451 . . . 4 𝑥 ∈ V
1716, 4, 5brpprod3b 35875 . . 3 (𝑥pprod( E , E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵))
18 elxp 5661 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
1915, 17, 183bitr4ri 304 . 2 (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )⟨𝐴, 𝐵⟩)
201, 2, 3, 8, 19brtxpsd3 35884 1 (⟨𝐴, 𝐵⟩Cart𝐶𝐶 = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cop 4595   class class class wbr 5107   E cep 5537   × cxp 5636  pprodcpprod 35819  Cartccart 35829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-symdif 4216  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-txp 35842  df-pprod 35843  df-cart 35853
This theorem is referenced by:  brimg  35925  brrestrict  35937
  Copyright terms: Public domain W3C validator