![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcart | Structured version Visualization version GIF version |
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brcart.1 | ⊢ 𝐴 ∈ V |
brcart.2 | ⊢ 𝐵 ∈ V |
brcart.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
brcart | ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5474 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | brcart.3 | . 2 ⊢ 𝐶 ∈ V | |
3 | df-cart 35846 | . 2 ⊢ Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) | |
4 | brcart.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | brcart.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | opelvv 5728 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
7 | brxp 5737 | . . 3 ⊢ (〈𝐴, 𝐵〉((V × V) × V)𝐶 ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ 𝐶 ∈ V)) | |
8 | 6, 2, 7 | mpbir2an 711 | . 2 ⊢ 〈𝐴, 𝐵〉((V × V) × V)𝐶 |
9 | 3anass 1094 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵))) | |
10 | 4 | epeli 5590 | . . . . . . 7 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
11 | 5 | epeli 5590 | . . . . . . 7 ⊢ (𝑧 E 𝐵 ↔ 𝑧 ∈ 𝐵) |
12 | 10, 11 | anbi12i 628 | . . . . . 6 ⊢ ((𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
13 | 12 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
14 | 9, 13 | bitri 275 | . . . 4 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
15 | 14 | 2exbii 1845 | . . 3 ⊢ (∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
16 | vex 3481 | . . . 4 ⊢ 𝑥 ∈ V | |
17 | 16, 4, 5 | brpprod3b 35868 | . . 3 ⊢ (𝑥pprod( E , E )〈𝐴, 𝐵〉 ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) |
18 | elxp 5711 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) | |
19 | 15, 17, 18 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )〈𝐴, 𝐵〉) |
20 | 1, 2, 3, 8, 19 | brtxpsd3 35877 | 1 ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 〈cop 4636 class class class wbr 5147 E cep 5587 × cxp 5686 pprodcpprod 35812 Cartccart 35822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-symdif 4258 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-eprel 5588 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fo 6568 df-fv 6570 df-1st 8012 df-2nd 8013 df-txp 35835 df-pprod 35836 df-cart 35846 |
This theorem is referenced by: brimg 35918 brrestrict 35930 |
Copyright terms: Public domain | W3C validator |