Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcart | Structured version Visualization version GIF version |
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brcart.1 | ⊢ 𝐴 ∈ V |
brcart.2 | ⊢ 𝐵 ∈ V |
brcart.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
brcart | ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5373 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | brcart.3 | . 2 ⊢ 𝐶 ∈ V | |
3 | df-cart 34094 | . 2 ⊢ Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) | |
4 | brcart.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | brcart.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | opelvv 5619 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ (V × V) |
7 | brxp 5627 | . . 3 ⊢ (〈𝐴, 𝐵〉((V × V) × V)𝐶 ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ 𝐶 ∈ V)) | |
8 | 6, 2, 7 | mpbir2an 707 | . 2 ⊢ 〈𝐴, 𝐵〉((V × V) × V)𝐶 |
9 | 3anass 1093 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵))) | |
10 | 4 | epeli 5488 | . . . . . . 7 ⊢ (𝑦 E 𝐴 ↔ 𝑦 ∈ 𝐴) |
11 | 5 | epeli 5488 | . . . . . . 7 ⊢ (𝑧 E 𝐵 ↔ 𝑧 ∈ 𝐵) |
12 | 10, 11 | anbi12i 626 | . . . . . 6 ⊢ ((𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
13 | 12 | anbi2i 622 | . . . . 5 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
14 | 9, 13 | bitri 274 | . . . 4 ⊢ ((𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ (𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
15 | 14 | 2exbii 1852 | . . 3 ⊢ (∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
16 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
17 | 16, 4, 5 | brpprod3b 34116 | . . 3 ⊢ (𝑥pprod( E , E )〈𝐴, 𝐵〉 ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ 𝑦 E 𝐴 ∧ 𝑧 E 𝐵)) |
18 | elxp 5603 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦∃𝑧(𝑥 = 〈𝑦, 𝑧〉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) | |
19 | 15, 17, 18 | 3bitr4ri 303 | . 2 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )〈𝐴, 𝐵〉) |
20 | 1, 2, 3, 8, 19 | brtxpsd3 34125 | 1 ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 〈cop 4564 class class class wbr 5070 E cep 5485 × cxp 5578 pprodcpprod 34060 Cartccart 34070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 df-pprod 34084 df-cart 34094 |
This theorem is referenced by: brimg 34166 brrestrict 34178 |
Copyright terms: Public domain | W3C validator |