Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcart Structured version   Visualization version   GIF version

Theorem brcart 33450
Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcart.1 𝐴 ∈ V
brcart.2 𝐵 ∈ V
brcart.3 𝐶 ∈ V
Assertion
Ref Expression
brcart (⟨𝐴, 𝐵⟩Cart𝐶𝐶 = (𝐴 × 𝐵))

Proof of Theorem brcart
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5343 . 2 𝐴, 𝐵⟩ ∈ V
2 brcart.3 . 2 𝐶 ∈ V
3 df-cart 33383 . 2 Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V)))
4 brcart.1 . . . 4 𝐴 ∈ V
5 brcart.2 . . . 4 𝐵 ∈ V
64, 5opelvv 5581 . . 3 𝐴, 𝐵⟩ ∈ (V × V)
7 brxp 5588 . . 3 (⟨𝐴, 𝐵⟩((V × V) × V)𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ 𝐶 ∈ V))
86, 2, 7mpbir2an 710 . 2 𝐴, 𝐵⟩((V × V) × V)𝐶
9 3anass 1092 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 E 𝐴𝑧 E 𝐵)))
104epeli 5455 . . . . . . 7 (𝑦 E 𝐴𝑦𝐴)
115epeli 5455 . . . . . . 7 (𝑧 E 𝐵𝑧𝐵)
1210, 11anbi12i 629 . . . . . 6 ((𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑦𝐴𝑧𝐵))
1312anbi2i 625 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 E 𝐴𝑧 E 𝐵)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
149, 13bitri 278 . . . 4 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
15142exbii 1850 . . 3 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
16 vex 3483 . . . 4 𝑥 ∈ V
1716, 4, 5brpprod3b 33405 . . 3 (𝑥pprod( E , E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ 𝑦 E 𝐴𝑧 E 𝐵))
18 elxp 5565 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
1915, 17, 183bitr4ri 307 . 2 (𝑥 ∈ (𝐴 × 𝐵) ↔ 𝑥pprod( E , E )⟨𝐴, 𝐵⟩)
201, 2, 3, 8, 19brtxpsd3 33414 1 (⟨𝐴, 𝐵⟩Cart𝐶𝐶 = (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2115  Vcvv 3480  cop 4556   class class class wbr 5052   E cep 5451   × cxp 5540  pprodcpprod 33349  Cartccart 33359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-symdif 4204  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-eprel 5452  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fo 6349  df-fv 6351  df-1st 7684  df-2nd 7685  df-txp 33372  df-pprod 33373  df-cart 33383
This theorem is referenced by:  brimg  33455  brrestrict  33467
  Copyright terms: Public domain W3C validator