![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2ndb | Structured version Visualization version GIF version |
Description: Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.) |
Ref | Expression |
---|---|
1st2ndb | ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 8013 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
2 | id 22 | . . 3 ⊢ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
3 | fvex 6904 | . . . 4 ⊢ (1st ‘𝐴) ∈ V | |
4 | fvex 6904 | . . . 4 ⊢ (2nd ‘𝐴) ∈ V | |
5 | 3, 4 | opelvv 5716 | . . 3 ⊢ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ (V × V) |
6 | 2, 5 | eqeltrdi 2841 | . 2 ⊢ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ → 𝐴 ∈ (V × V)) |
7 | 1, 6 | impbii 208 | 1 ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 × cxp 5674 ‘cfv 6543 1st c1st 7972 2nd c2nd 7973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: wlkcpr 28883 wlkeq 28888 opfv 31865 1stpreimas 31922 ovolval2lem 45349 |
Copyright terms: Public domain | W3C validator |