MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndb Structured version   Visualization version   GIF version

Theorem 1st2ndb 8014
Description: Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.)
Assertion
Ref Expression
1st2ndb (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2ndb
StepHypRef Expression
1 1st2nd2 8013 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 id 22 . . 3 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3 fvex 6904 . . . 4 (1st𝐴) ∈ V
4 fvex 6904 . . . 4 (2nd𝐴) ∈ V
53, 4opelvv 5716 . . 3 ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (V × V)
62, 5eqeltrdi 2841 . 2 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → 𝐴 ∈ (V × V))
71, 6impbii 208 1 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  Vcvv 3474  cop 4634   × cxp 5674  cfv 6543  1st c1st 7972  2nd c2nd 7973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7974  df-2nd 7975
This theorem is referenced by:  wlkcpr  28883  wlkeq  28888  opfv  31865  1stpreimas  31922  ovolval2lem  45349
  Copyright terms: Public domain W3C validator