Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndb Structured version   Visualization version   GIF version

Theorem 1st2ndb 7721
 Description: Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.)
Assertion
Ref Expression
1st2ndb (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2ndb
StepHypRef Expression
1 1st2nd2 7720 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 id 22 . . 3 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3 fvex 6676 . . . 4 (1st𝐴) ∈ V
4 fvex 6676 . . . 4 (2nd𝐴) ∈ V
53, 4opelvv 5587 . . 3 ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (V × V)
62, 5syl6eqel 2919 . 2 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → 𝐴 ∈ (V × V))
71, 6impbii 211 1 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   = wceq 1530   ∈ wcel 2107  Vcvv 3493  ⟨cop 4565   × cxp 5546  ‘cfv 6348  1st c1st 7679  2nd c2nd 7680 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fv 6356  df-1st 7681  df-2nd 7682 This theorem is referenced by:  wlkcpr  27402  wlkeq  27407  opfv  30385  1stpreimas  30433  ovolval2lem  42910
 Copyright terms: Public domain W3C validator