| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2ndb | Structured version Visualization version GIF version | ||
| Description: Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.) |
| Ref | Expression |
|---|---|
| 1st2ndb | ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 7955 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | id 22 | . . 3 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 3 | fvex 6830 | . . . 4 ⊢ (1st ‘𝐴) ∈ V | |
| 4 | fvex 6830 | . . . 4 ⊢ (2nd ‘𝐴) ∈ V | |
| 5 | 3, 4 | opelvv 5651 | . . 3 ⊢ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ (V × V) |
| 6 | 2, 5 | eqeltrdi 2839 | . 2 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 → 𝐴 ∈ (V × V)) |
| 7 | 1, 6 | impbii 209 | 1 ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 × cxp 5609 ‘cfv 6476 1st c1st 7914 2nd c2nd 7915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fv 6484 df-1st 7916 df-2nd 7917 |
| This theorem is referenced by: wlkcpr 29602 wlkeq 29607 opfv 32618 1stpreimas 32679 ovolval2lem 46681 tposideq 48919 fuco22a 49382 |
| Copyright terms: Public domain | W3C validator |