MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndb Structured version   Visualization version   GIF version

Theorem 1st2ndb 7970
Description: Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.)
Assertion
Ref Expression
1st2ndb (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2ndb
StepHypRef Expression
1 1st2nd2 7969 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 id 22 . . 3 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3 fvex 6844 . . . 4 (1st𝐴) ∈ V
4 fvex 6844 . . . 4 (2nd𝐴) ∈ V
53, 4opelvv 5661 . . 3 ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (V × V)
62, 5eqeltrdi 2841 . 2 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → 𝐴 ∈ (V × V))
71, 6impbii 209 1 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583   × cxp 5619  cfv 6489  1st c1st 7928  2nd c2nd 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fv 6497  df-1st 7930  df-2nd 7931
This theorem is referenced by:  wlkcpr  29628  wlkeq  29633  opfv  32648  1stpreimas  32711  ovolval2lem  46803  tposideq  49049  fuco22a  49511
  Copyright terms: Public domain W3C validator