MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndb Structured version   Visualization version   GIF version

Theorem 1st2ndb 8011
Description: Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.)
Assertion
Ref Expression
1st2ndb (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2ndb
StepHypRef Expression
1 1st2nd2 8010 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 id 22 . . 3 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3 fvex 6874 . . . 4 (1st𝐴) ∈ V
4 fvex 6874 . . . 4 (2nd𝐴) ∈ V
53, 4opelvv 5681 . . 3 ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (V × V)
62, 5eqeltrdi 2837 . 2 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → 𝐴 ∈ (V × V))
71, 6impbii 209 1 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   × cxp 5639  cfv 6514  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-1st 7971  df-2nd 7972
This theorem is referenced by:  wlkcpr  29564  wlkeq  29569  opfv  32575  1stpreimas  32636  ovolval2lem  46648  tposideq  48880  fuco22a  49343
  Copyright terms: Public domain W3C validator