| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqop2 | Structured version Visualization version GIF version | ||
| Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) |
| Ref | Expression |
|---|---|
| eqop2.1 | ⊢ 𝐵 ∈ V |
| eqop2.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| eqop2 | ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqop2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | eqop2.2 | . . . 4 ⊢ 𝐶 ∈ V | |
| 3 | 1, 2 | opelvv 5694 | . . 3 ⊢ 〈𝐵, 𝐶〉 ∈ (V × V) |
| 4 | eleq1 2822 | . . 3 ⊢ (𝐴 = 〈𝐵, 𝐶〉 → (𝐴 ∈ (V × V) ↔ 〈𝐵, 𝐶〉 ∈ (V × V))) | |
| 5 | 3, 4 | mpbiri 258 | . 2 ⊢ (𝐴 = 〈𝐵, 𝐶〉 → 𝐴 ∈ (V × V)) |
| 6 | eqop 8030 | . 2 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | |
| 7 | 5, 6 | biadanii 821 | 1 ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 × cxp 5652 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: evlslem4 22034 |
| Copyright terms: Public domain | W3C validator |