MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqop2 Structured version   Visualization version   GIF version

Theorem eqop2 8012
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
Hypotheses
Ref Expression
eqop2.1 𝐵 ∈ V
eqop2.2 𝐶 ∈ V
Assertion
Ref Expression
eqop2 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))

Proof of Theorem eqop2
StepHypRef Expression
1 eqop2.1 . . . 4 𝐵 ∈ V
2 eqop2.2 . . . 4 𝐶 ∈ V
31, 2opelvv 5707 . . 3 𝐵, 𝐶⟩ ∈ (V × V)
4 eleq1 2813 . . 3 (𝐴 = ⟨𝐵, 𝐶⟩ → (𝐴 ∈ (V × V) ↔ ⟨𝐵, 𝐶⟩ ∈ (V × V)))
53, 4mpbiri 258 . 2 (𝐴 = ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (V × V))
6 eqop 8011 . 2 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
75, 6biadanii 819 1 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cop 4627   × cxp 5665  cfv 6534  1st c1st 7967  2nd c2nd 7968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fv 6542  df-1st 7969  df-2nd 7970
This theorem is referenced by:  evlslem4  21949
  Copyright terms: Public domain W3C validator