MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqop2 Structured version   Visualization version   GIF version

Theorem eqop2 8031
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
Hypotheses
Ref Expression
eqop2.1 𝐵 ∈ V
eqop2.2 𝐶 ∈ V
Assertion
Ref Expression
eqop2 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))

Proof of Theorem eqop2
StepHypRef Expression
1 eqop2.1 . . . 4 𝐵 ∈ V
2 eqop2.2 . . . 4 𝐶 ∈ V
31, 2opelvv 5694 . . 3 𝐵, 𝐶⟩ ∈ (V × V)
4 eleq1 2822 . . 3 (𝐴 = ⟨𝐵, 𝐶⟩ → (𝐴 ∈ (V × V) ↔ ⟨𝐵, 𝐶⟩ ∈ (V × V)))
53, 4mpbiri 258 . 2 (𝐴 = ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (V × V))
6 eqop 8030 . 2 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
75, 6biadanii 821 1 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607   × cxp 5652  cfv 6531  1st c1st 7986  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-1st 7988  df-2nd 7989
This theorem is referenced by:  evlslem4  22034
  Copyright terms: Public domain W3C validator