![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqop2 | Structured version Visualization version GIF version |
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) |
Ref | Expression |
---|---|
eqop2.1 | ⊢ 𝐵 ∈ V |
eqop2.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eqop2 | ⊢ (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqop2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | eqop2.2 | . . . 4 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | opelvv 5707 | . . 3 ⊢ ⟨𝐵, 𝐶⟩ ∈ (V × V) |
4 | eleq1 2813 | . . 3 ⊢ (𝐴 = ⟨𝐵, 𝐶⟩ → (𝐴 ∈ (V × V) ↔ ⟨𝐵, 𝐶⟩ ∈ (V × V))) | |
5 | 3, 4 | mpbiri 258 | . 2 ⊢ (𝐴 = ⟨𝐵, 𝐶⟩ → 𝐴 ∈ (V × V)) |
6 | eqop 8011 | . 2 ⊢ (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | |
7 | 5, 6 | biadanii 819 | 1 ⊢ (𝐴 = ⟨𝐵, 𝐶⟩ ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⟨cop 4627 × cxp 5665 ‘cfv 6534 1st c1st 7967 2nd c2nd 7968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fv 6542 df-1st 7969 df-2nd 7970 |
This theorem is referenced by: evlslem4 21949 |
Copyright terms: Public domain | W3C validator |