MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfcl Structured version   Visualization version   GIF version

Theorem evlfcl 18239
Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors 𝐶𝐷, and the second parameter in 𝐷. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfcl.e 𝐸 = (𝐶 evalF 𝐷)
evlfcl.q 𝑄 = (𝐶 FuncCat 𝐷)
evlfcl.c (𝜑𝐶 ∈ Cat)
evlfcl.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
evlfcl (𝜑𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷))

Proof of Theorem evlfcl
Dummy variables 𝑓 𝑎 𝑔 𝑚 𝑛 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlfcl.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
2 evlfcl.c . . . . 5 (𝜑𝐶 ∈ Cat)
3 evlfcl.d . . . . 5 (𝜑𝐷 ∈ Cat)
4 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2736 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2736 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
7 eqid 2736 . . . . 5 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
81, 2, 3, 4, 5, 6, 7evlfval 18234 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
9 ovex 7443 . . . . . 6 (𝐶 Func 𝐷) ∈ V
10 fvex 6894 . . . . . 6 (Base‘𝐶) ∈ V
119, 10mpoex 8083 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)) ∈ V
129, 10xpex 7752 . . . . . 6 ((𝐶 Func 𝐷) × (Base‘𝐶)) ∈ V
1312, 12mpoex 8083 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1411, 13opelvv 5699 . . . 4 ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ ∈ (V × V)
158, 14eqeltrdi 2843 . . 3 (𝜑𝐸 ∈ (V × V))
16 1st2nd2 8032 . . 3 (𝐸 ∈ (V × V) → 𝐸 = ⟨(1st𝐸), (2nd𝐸)⟩)
1715, 16syl 17 . 2 (𝜑𝐸 = ⟨(1st𝐸), (2nd𝐸)⟩)
18 eqid 2736 . . . . 5 (𝑄 ×c 𝐶) = (𝑄 ×c 𝐶)
19 evlfcl.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
2019fucbas 17981 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
2118, 20, 4xpcbas 18195 . . . 4 ((𝐶 Func 𝐷) × (Base‘𝐶)) = (Base‘(𝑄 ×c 𝐶))
22 eqid 2736 . . . 4 (Base‘𝐷) = (Base‘𝐷)
23 eqid 2736 . . . 4 (Hom ‘(𝑄 ×c 𝐶)) = (Hom ‘(𝑄 ×c 𝐶))
24 eqid 2736 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
25 eqid 2736 . . . 4 (Id‘(𝑄 ×c 𝐶)) = (Id‘(𝑄 ×c 𝐶))
26 eqid 2736 . . . 4 (Id‘𝐷) = (Id‘𝐷)
27 eqid 2736 . . . 4 (comp‘(𝑄 ×c 𝐶)) = (comp‘(𝑄 ×c 𝐶))
2819, 2, 3fuccat 17991 . . . . 5 (𝜑𝑄 ∈ Cat)
2918, 28, 2xpccat 18207 . . . 4 (𝜑 → (𝑄 ×c 𝐶) ∈ Cat)
30 relfunc 17880 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
31 simpr 484 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
32 1st2ndbr 8046 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
3330, 31, 32sylancr 587 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
344, 22, 33funcf1 17884 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
3534ffvelcdmda 7079 . . . . . . . 8 (((𝜑𝑓 ∈ (𝐶 Func 𝐷)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
3635ralrimiva 3133 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → ∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
3736ralrimiva 3133 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
38 eqid 2736 . . . . . . 7 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥))
3938fmpo 8072 . . . . . 6 (∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷) ↔ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
4037, 39sylib 218 . . . . 5 (𝜑 → (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
4111, 13op1std 8003 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)))
428, 41syl 17 . . . . . 6 (𝜑 → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)))
4342feq1d 6695 . . . . 5 (𝜑 → ((1st𝐸):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷) ↔ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷)))
4440, 43mpbird 257 . . . 4 (𝜑 → (1st𝐸):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
45 eqid 2736 . . . . . 6 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))
46 ovex 7443 . . . . . . . . 9 (𝑚(𝐶 Nat 𝐷)𝑛) ∈ V
47 ovex 7443 . . . . . . . . 9 ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ∈ V
4846, 47mpoex 8083 . . . . . . . 8 (𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
4948csbex 5286 . . . . . . 7 (1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
5049csbex 5286 . . . . . 6 (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
5145, 50fnmpoi 8074 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶)))
5211, 13op2ndd 8004 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
538, 52syl 17 . . . . . 6 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
5453fneq1d 6636 . . . . 5 (𝜑 → ((2nd𝐸) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶))) ↔ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶)))))
5551, 54mpbiri 258 . . . 4 (𝜑 → (2nd𝐸) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶))))
563ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
5756adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝐷 ∈ Cat)
58 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐶 Func 𝐷))
5930, 58, 32sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
604, 22, 59funcf1 17884 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
6160adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
62 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑢 ∈ (Base‘𝐶))
6362adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑢 ∈ (Base‘𝐶))
6461, 63ffvelcdmd 7080 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑓)‘𝑢) ∈ (Base‘𝐷))
65 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑣 ∈ (Base‘𝐶))
6661, 65ffvelcdmd 7080 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑓)‘𝑣) ∈ (Base‘𝐷))
67 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑔 ∈ (𝐶 Func 𝐷))
68 1st2ndbr 8046 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (1st𝑔)(𝐶 Func 𝐷)(2nd𝑔))
6930, 67, 68sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑔)(𝐶 Func 𝐷)(2nd𝑔))
704, 22, 69funcf1 17884 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑔):(Base‘𝐶)⟶(Base‘𝐷))
7170adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (1st𝑔):(Base‘𝐶)⟶(Base‘𝐷))
7271, 65ffvelcdmd 7080 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑔)‘𝑣) ∈ (Base‘𝐷))
73 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑣 ∈ (Base‘𝐶))
744, 5, 24, 59, 62, 73funcf2 17886 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑢(2nd𝑓)𝑣):(𝑢(Hom ‘𝐶)𝑣)⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
7574adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (𝑢(2nd𝑓)𝑣):(𝑢(Hom ‘𝐶)𝑣)⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
76 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ∈ (𝑢(Hom ‘𝐶)𝑣))
7775, 76ffvelcdmd 7080 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((𝑢(2nd𝑓)𝑣)‘) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
78 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))
797, 78nat1st2nd 17972 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐶 Nat 𝐷)⟨(1st𝑔), (2nd𝑔)⟩))
807, 79, 4, 24, 65natcl 17974 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (𝑎𝑣) ∈ (((1st𝑓)‘𝑣)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8122, 24, 6, 57, 64, 66, 72, 77, 80catcocl 17702 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8281ralrimivva 3188 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀ ∈ (𝑢(Hom ‘𝐶)𝑣)((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
83 eqid 2736 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))) = (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)))
8483fmpo 8072 . . . . . . . . . . . . 13 (∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀ ∈ (𝑢(Hom ‘𝐶)𝑣)((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)) ↔ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8582, 84sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
862ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
87 eqid 2736 . . . . . . . . . . . . . 14 (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩)
881, 86, 56, 4, 5, 6, 7, 58, 67, 62, 73, 87evlf2 18235 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩) = (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))))
8988feq1d 6695 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)) ↔ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣))))
9085, 89mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
9119, 7fuchom 17982 . . . . . . . . . . . . 13 (𝐶 Nat 𝐷) = (Hom ‘𝑄)
9218, 20, 4, 91, 5, 58, 62, 67, 73, 23xpchom2 18203 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩) = ((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣)))
931, 86, 56, 4, 58, 62evlf1 18237 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑓(1st𝐸)𝑢) = ((1st𝑓)‘𝑢))
941, 86, 56, 4, 67, 73evlf1 18237 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑔(1st𝐸)𝑣) = ((1st𝑔)‘𝑣))
9593, 94oveq12d 7428 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) = (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
9692, 95feq23d 6706 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣))))
9790, 96mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
9897ralrimivva 3188 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
9998ralrimivva 3188 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
100 oveq2 7418 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (𝑥(2nd𝐸)𝑦) = (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩))
101 oveq2 7418 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) = (𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩))
102 fveq2 6881 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑔, 𝑣⟩ → ((1st𝐸)‘𝑦) = ((1st𝐸)‘⟨𝑔, 𝑣⟩))
103 df-ov 7413 . . . . . . . . . . . . . 14 (𝑔(1st𝐸)𝑣) = ((1st𝐸)‘⟨𝑔, 𝑣⟩)
104102, 103eqtr4di 2789 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑔, 𝑣⟩ → ((1st𝐸)‘𝑦) = (𝑔(1st𝐸)𝑣))
105104oveq2d 7426 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) = (((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
106100, 101, 105feq123d 6700 . . . . . . . . . . 11 (𝑦 = ⟨𝑔, 𝑣⟩ → ((𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
107106ralxp 5826 . . . . . . . . . 10 (∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
108 oveq1 7417 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩))
109 oveq1 7417 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩))
110 fveq2 6881 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑢⟩ → ((1st𝐸)‘𝑥) = ((1st𝐸)‘⟨𝑓, 𝑢⟩))
111 df-ov 7413 . . . . . . . . . . . . . 14 (𝑓(1st𝐸)𝑢) = ((1st𝐸)‘⟨𝑓, 𝑢⟩)
112110, 111eqtr4di 2789 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑓, 𝑢⟩ → ((1st𝐸)‘𝑥) = (𝑓(1st𝐸)𝑢))
113112oveq1d 7425 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) = ((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
114108, 109, 113feq123d 6700 . . . . . . . . . . 11 (𝑥 = ⟨𝑓, 𝑢⟩ → ((𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
1151142ralbidv 3209 . . . . . . . . . 10 (𝑥 = ⟨𝑓, 𝑢⟩ → (∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
116107, 115bitrid 283 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → (∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
117116ralxp 5826 . . . . . . . 8 (∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
11899, 117sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
119118r19.21bi 3238 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → ∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
120119r19.21bi 3238 . . . . 5 (((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → (𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
121120anasss 466 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))) → (𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
12228adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑄 ∈ Cat)
1232adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
124 eqid 2736 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
125 eqid 2736 . . . . . . . . . . 11 (Id‘𝐶) = (Id‘𝐶)
126 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐶 Func 𝐷))
127 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑢 ∈ (Base‘𝐶))
12818, 122, 123, 20, 4, 124, 125, 25, 126, 127xpcid 18206 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩) = ⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩)
129128fveq2d 6885 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩))
130 df-ov 7413 . . . . . . . . 9 (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩)
131129, 130eqtr4di 2789 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)))
1323adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
133 eqid 2736 . . . . . . . . 9 (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)
13420, 91, 124, 122, 126catidcl 17699 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝑄)‘𝑓) ∈ (𝑓(𝐶 Nat 𝐷)𝑓))
1354, 5, 125, 123, 127catidcl 17699 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑢) ∈ (𝑢(Hom ‘𝐶)𝑢))
1361, 123, 132, 4, 5, 6, 7, 126, 126, 127, 127, 133, 134, 135evlf2val 18236 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)) = ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))))
13730, 126, 32sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
1384, 22, 137funcf1 17884 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
139138, 127ffvelcdmd 7080 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((1st𝑓)‘𝑢) ∈ (Base‘𝐷))
14022, 24, 26, 132, 139catidcl 17699 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐷)‘((1st𝑓)‘𝑢)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑢)))
14122, 24, 26, 132, 139, 6, 139, 140catlid 17700 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝐷)‘((1st𝑓)‘𝑢))(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((Id‘𝐷)‘((1st𝑓)‘𝑢))) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
14219, 124, 26, 126fucid 17992 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝑄)‘𝑓) = ((Id‘𝐷) ∘ (1st𝑓)))
143142fveq1d 6883 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)‘𝑢) = (((Id‘𝐷) ∘ (1st𝑓))‘𝑢))
144 fvco3 6983 . . . . . . . . . . . 12 (((1st𝑓):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑢 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ (1st𝑓))‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
145138, 127, 144syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝐷) ∘ (1st𝑓))‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
146143, 145eqtrd 2771 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
1474, 125, 26, 137, 127funcid 17888 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢)) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
148146, 147oveq12d 7428 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))) = (((Id‘𝐷)‘((1st𝑓)‘𝑢))(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((Id‘𝐷)‘((1st𝑓)‘𝑢))))
1491, 123, 132, 4, 126, 127evlf1 18237 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (𝑓(1st𝐸)𝑢) = ((1st𝑓)‘𝑢))
150149fveq2d 6885 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
151141, 148, 1503eqtr4d 2781 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
152131, 136, 1513eqtrd 2775 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
153152ralrimivva 3188 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
154 id 22 . . . . . . . . . 10 (𝑥 = ⟨𝑓, 𝑢⟩ → 𝑥 = ⟨𝑓, 𝑢⟩)
155154, 154oveq12d 7428 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(2nd𝐸)𝑥) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩))
156 fveq2 6881 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → ((Id‘(𝑄 ×c 𝐶))‘𝑥) = ((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩))
157155, 156fveq12d 6888 . . . . . . . 8 (𝑥 = ⟨𝑓, 𝑢⟩ → ((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)))
158112fveq2d 6885 . . . . . . . 8 (𝑥 = ⟨𝑓, 𝑢⟩ → ((Id‘𝐷)‘((1st𝐸)‘𝑥)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
159157, 158eqeq12d 2752 . . . . . . 7 (𝑥 = ⟨𝑓, 𝑢⟩ → (((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)) ↔ ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢))))
160159ralxp 5826 . . . . . 6 (∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)) ↔ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
161153, 160sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)))
162161r19.21bi 3238 . . . 4 ((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → ((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)))
16323ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝐶 ∈ Cat)
16433ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝐷 ∈ Cat)
165 simp21 1207 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
166 1st2nd2 8032 . . . . . . . . 9 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
167165, 166syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
168167, 165eqeltrrd 2836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
169 opelxp 5695 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑥) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑥) ∈ (Base‘𝐶)))
170168, 169sylib 218 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑥) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑥) ∈ (Base‘𝐶)))
171 simp22 1208 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
172 1st2nd2 8032 . . . . . . . . 9 (𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
173171, 172syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
174173, 171eqeltrrd 2836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
175 opelxp 5695 . . . . . . 7 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑦) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑦) ∈ (Base‘𝐶)))
176174, 175sylib 218 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑦) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑦) ∈ (Base‘𝐶)))
177 simp23 1209 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
178 1st2nd2 8032 . . . . . . . . 9 (𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
179177, 178syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
180179, 177eqeltrrd 2836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
181 opelxp 5695 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑧) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑧) ∈ (Base‘𝐶)))
182180, 181sylib 218 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑧) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑧) ∈ (Base‘𝐶)))
183 simp3l 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦))
18418, 21, 91, 5, 23, 165, 171xpchom 18197 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) = (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
185183, 184eleqtrd 2837 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
186 1st2nd2 8032 . . . . . . . . 9 (𝑓 ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
187185, 186syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
188187, 185eqeltrrd 2836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑓), (2nd𝑓)⟩ ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
189 opelxp 5695 . . . . . . 7 (⟨(1st𝑓), (2nd𝑓)⟩ ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) ↔ ((1st𝑓) ∈ ((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) ∧ (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
190188, 189sylib 218 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑓) ∈ ((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) ∧ (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
191 simp3r 1203 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))
19218, 21, 91, 5, 23, 171, 177xpchom 18197 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧) = (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
193191, 192eleqtrd 2837 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
194 1st2nd2 8032 . . . . . . . . 9 (𝑔 ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
195193, 194syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
196195, 193eqeltrrd 2836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑔), (2nd𝑔)⟩ ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
197 opelxp 5695 . . . . . . 7 (⟨(1st𝑔), (2nd𝑔)⟩ ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) ↔ ((1st𝑔) ∈ ((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) ∧ (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
198196, 197sylib 218 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑔) ∈ ((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) ∧ (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
1991, 19, 163, 164, 7, 170, 176, 182, 190, 198evlfcllem 18238 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘(⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩)) = (((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)(⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)))
200167, 179oveq12d 7428 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(2nd𝐸)𝑧) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩))
201167, 173opeq12d 4862 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨𝑥, 𝑦⟩ = ⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩)
202201, 179oveq12d 7428 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧) = (⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩))
203202, 195, 187oveq123d 7431 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓) = (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩))
204200, 203fveq12d 6888 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘(⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩)))
205167fveq2d 6885 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑥) = ((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩))
206173fveq2d 6885 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑦) = ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩))
207205, 206opeq12d 4862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩ = ⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩)
208179fveq2d 6885 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))
209207, 208oveq12d 7428 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧)) = (⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩)))
210173, 179oveq12d 7428 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑦(2nd𝐸)𝑧) = (⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩))
211210, 195fveq12d 6888 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑦(2nd𝐸)𝑧)‘𝑔) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
212167, 173oveq12d 7428 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(2nd𝐸)𝑦) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩))
213212, 187fveq12d 6888 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑦)‘𝑓) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩))
214209, 211, 213oveq123d 7431 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (((𝑦(2nd𝐸)𝑧)‘𝑔)(⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧))((𝑥(2nd𝐸)𝑦)‘𝑓)) = (((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)(⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)))
215199, 204, 2143eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓)) = (((𝑦(2nd𝐸)𝑧)‘𝑔)(⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧))((𝑥(2nd𝐸)𝑦)‘𝑓)))
21621, 22, 23, 24, 25, 26, 27, 6, 29, 3, 44, 55, 121, 162, 215isfuncd 17883 . . 3 (𝜑 → (1st𝐸)((𝑄 ×c 𝐶) Func 𝐷)(2nd𝐸))
217 df-br 5125 . . 3 ((1st𝐸)((𝑄 ×c 𝐶) Func 𝐷)(2nd𝐸) ↔ ⟨(1st𝐸), (2nd𝐸)⟩ ∈ ((𝑄 ×c 𝐶) Func 𝐷))
218216, 217sylib 218 . 2 (𝜑 → ⟨(1st𝐸), (2nd𝐸)⟩ ∈ ((𝑄 ×c 𝐶) Func 𝐷))
21917, 218eqeltrd 2835 1 (𝜑𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  csb 3879  cop 4612   class class class wbr 5124   × cxp 5657  ccom 5663  Rel wrel 5664   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  compcco 17288  Catccat 17681  Idccid 17682   Func cfunc 17872   Nat cnat 17962   FuncCat cfuc 17963   ×c cxpc 18185   evalF cevlf 18226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-func 17876  df-nat 17964  df-fuc 17965  df-xpc 18189  df-evlf 18230
This theorem is referenced by:  uncfcl  18252  uncf1  18253  uncf2  18254  yonedalem1  18289
  Copyright terms: Public domain W3C validator