MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfcl Structured version   Visualization version   GIF version

Theorem evlfcl 17464
Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors 𝐶𝐷, and the second parameter in 𝐷. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfcl.e 𝐸 = (𝐶 evalF 𝐷)
evlfcl.q 𝑄 = (𝐶 FuncCat 𝐷)
evlfcl.c (𝜑𝐶 ∈ Cat)
evlfcl.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
evlfcl (𝜑𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷))

Proof of Theorem evlfcl
Dummy variables 𝑓 𝑎 𝑔 𝑚 𝑛 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlfcl.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
2 evlfcl.c . . . . 5 (𝜑𝐶 ∈ Cat)
3 evlfcl.d . . . . 5 (𝜑𝐷 ∈ Cat)
4 eqid 2798 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2798 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2798 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
7 eqid 2798 . . . . 5 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
81, 2, 3, 4, 5, 6, 7evlfval 17459 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
9 ovex 7168 . . . . . 6 (𝐶 Func 𝐷) ∈ V
10 fvex 6658 . . . . . 6 (Base‘𝐶) ∈ V
119, 10mpoex 7760 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)) ∈ V
129, 10xpex 7456 . . . . . 6 ((𝐶 Func 𝐷) × (Base‘𝐶)) ∈ V
1312, 12mpoex 7760 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1411, 13opelvv 5558 . . . 4 ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ ∈ (V × V)
158, 14eqeltrdi 2898 . . 3 (𝜑𝐸 ∈ (V × V))
16 1st2nd2 7710 . . 3 (𝐸 ∈ (V × V) → 𝐸 = ⟨(1st𝐸), (2nd𝐸)⟩)
1715, 16syl 17 . 2 (𝜑𝐸 = ⟨(1st𝐸), (2nd𝐸)⟩)
18 eqid 2798 . . . . 5 (𝑄 ×c 𝐶) = (𝑄 ×c 𝐶)
19 evlfcl.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
2019fucbas 17222 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
2118, 20, 4xpcbas 17420 . . . 4 ((𝐶 Func 𝐷) × (Base‘𝐶)) = (Base‘(𝑄 ×c 𝐶))
22 eqid 2798 . . . 4 (Base‘𝐷) = (Base‘𝐷)
23 eqid 2798 . . . 4 (Hom ‘(𝑄 ×c 𝐶)) = (Hom ‘(𝑄 ×c 𝐶))
24 eqid 2798 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
25 eqid 2798 . . . 4 (Id‘(𝑄 ×c 𝐶)) = (Id‘(𝑄 ×c 𝐶))
26 eqid 2798 . . . 4 (Id‘𝐷) = (Id‘𝐷)
27 eqid 2798 . . . 4 (comp‘(𝑄 ×c 𝐶)) = (comp‘(𝑄 ×c 𝐶))
2819, 2, 3fuccat 17232 . . . . 5 (𝜑𝑄 ∈ Cat)
2918, 28, 2xpccat 17432 . . . 4 (𝜑 → (𝑄 ×c 𝐶) ∈ Cat)
30 relfunc 17124 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
31 simpr 488 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
32 1st2ndbr 7723 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
3330, 31, 32sylancr 590 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
344, 22, 33funcf1 17128 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
3534ffvelrnda 6828 . . . . . . . 8 (((𝜑𝑓 ∈ (𝐶 Func 𝐷)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
3635ralrimiva 3149 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → ∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
3736ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
38 eqid 2798 . . . . . . 7 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥))
3938fmpo 7748 . . . . . 6 (∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷) ↔ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
4037, 39sylib 221 . . . . 5 (𝜑 → (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
4111, 13op1std 7681 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)))
428, 41syl 17 . . . . . 6 (𝜑 → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)))
4342feq1d 6472 . . . . 5 (𝜑 → ((1st𝐸):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷) ↔ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷)))
4440, 43mpbird 260 . . . 4 (𝜑 → (1st𝐸):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
45 eqid 2798 . . . . . 6 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))
46 ovex 7168 . . . . . . . . 9 (𝑚(𝐶 Nat 𝐷)𝑛) ∈ V
47 ovex 7168 . . . . . . . . 9 ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ∈ V
4846, 47mpoex 7760 . . . . . . . 8 (𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
4948csbex 5179 . . . . . . 7 (1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
5049csbex 5179 . . . . . 6 (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
5145, 50fnmpoi 7750 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶)))
5211, 13op2ndd 7682 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
538, 52syl 17 . . . . . 6 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
5453fneq1d 6416 . . . . 5 (𝜑 → ((2nd𝐸) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶))) ↔ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶)))))
5551, 54mpbiri 261 . . . 4 (𝜑 → (2nd𝐸) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶))))
563ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
5756adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝐷 ∈ Cat)
58 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐶 Func 𝐷))
5930, 58, 32sylancr 590 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
604, 22, 59funcf1 17128 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
6160adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
62 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑢 ∈ (Base‘𝐶))
6362adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑢 ∈ (Base‘𝐶))
6461, 63ffvelrnd 6829 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑓)‘𝑢) ∈ (Base‘𝐷))
65 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑣 ∈ (Base‘𝐶))
6661, 65ffvelrnd 6829 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑓)‘𝑣) ∈ (Base‘𝐷))
67 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑔 ∈ (𝐶 Func 𝐷))
68 1st2ndbr 7723 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (1st𝑔)(𝐶 Func 𝐷)(2nd𝑔))
6930, 67, 68sylancr 590 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑔)(𝐶 Func 𝐷)(2nd𝑔))
704, 22, 69funcf1 17128 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑔):(Base‘𝐶)⟶(Base‘𝐷))
7170adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (1st𝑔):(Base‘𝐶)⟶(Base‘𝐷))
7271, 65ffvelrnd 6829 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑔)‘𝑣) ∈ (Base‘𝐷))
73 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑣 ∈ (Base‘𝐶))
744, 5, 24, 59, 62, 73funcf2 17130 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑢(2nd𝑓)𝑣):(𝑢(Hom ‘𝐶)𝑣)⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
7574adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (𝑢(2nd𝑓)𝑣):(𝑢(Hom ‘𝐶)𝑣)⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
76 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ∈ (𝑢(Hom ‘𝐶)𝑣))
7775, 76ffvelrnd 6829 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((𝑢(2nd𝑓)𝑣)‘) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
78 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))
797, 78nat1st2nd 17213 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐶 Nat 𝐷)⟨(1st𝑔), (2nd𝑔)⟩))
807, 79, 4, 24, 65natcl 17215 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (𝑎𝑣) ∈ (((1st𝑓)‘𝑣)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8122, 24, 6, 57, 64, 66, 72, 77, 80catcocl 16948 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8281ralrimivva 3156 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀ ∈ (𝑢(Hom ‘𝐶)𝑣)((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
83 eqid 2798 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))) = (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)))
8483fmpo 7748 . . . . . . . . . . . . 13 (∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀ ∈ (𝑢(Hom ‘𝐶)𝑣)((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)) ↔ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8582, 84sylib 221 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
862ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
87 eqid 2798 . . . . . . . . . . . . . 14 (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩)
881, 86, 56, 4, 5, 6, 7, 58, 67, 62, 73, 87evlf2 17460 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩) = (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))))
8988feq1d 6472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)) ↔ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣))))
9085, 89mpbird 260 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
9119, 7fuchom 17223 . . . . . . . . . . . . 13 (𝐶 Nat 𝐷) = (Hom ‘𝑄)
9218, 20, 4, 91, 5, 58, 62, 67, 73, 23xpchom2 17428 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩) = ((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣)))
931, 86, 56, 4, 58, 62evlf1 17462 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑓(1st𝐸)𝑢) = ((1st𝑓)‘𝑢))
941, 86, 56, 4, 67, 73evlf1 17462 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑔(1st𝐸)𝑣) = ((1st𝑔)‘𝑣))
9593, 94oveq12d 7153 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) = (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
9692, 95feq23d 6482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣))))
9790, 96mpbird 260 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
9897ralrimivva 3156 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
9998ralrimivva 3156 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
100 oveq2 7143 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (𝑥(2nd𝐸)𝑦) = (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩))
101 oveq2 7143 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) = (𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩))
102 fveq2 6645 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑔, 𝑣⟩ → ((1st𝐸)‘𝑦) = ((1st𝐸)‘⟨𝑔, 𝑣⟩))
103 df-ov 7138 . . . . . . . . . . . . . 14 (𝑔(1st𝐸)𝑣) = ((1st𝐸)‘⟨𝑔, 𝑣⟩)
104102, 103eqtr4di 2851 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑔, 𝑣⟩ → ((1st𝐸)‘𝑦) = (𝑔(1st𝐸)𝑣))
105104oveq2d 7151 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) = (((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
106100, 101, 105feq123d 6476 . . . . . . . . . . 11 (𝑦 = ⟨𝑔, 𝑣⟩ → ((𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
107106ralxp 5676 . . . . . . . . . 10 (∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
108 oveq1 7142 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩))
109 oveq1 7142 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩))
110 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑢⟩ → ((1st𝐸)‘𝑥) = ((1st𝐸)‘⟨𝑓, 𝑢⟩))
111 df-ov 7138 . . . . . . . . . . . . . 14 (𝑓(1st𝐸)𝑢) = ((1st𝐸)‘⟨𝑓, 𝑢⟩)
112110, 111eqtr4di 2851 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑓, 𝑢⟩ → ((1st𝐸)‘𝑥) = (𝑓(1st𝐸)𝑢))
113112oveq1d 7150 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) = ((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
114108, 109, 113feq123d 6476 . . . . . . . . . . 11 (𝑥 = ⟨𝑓, 𝑢⟩ → ((𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
1151142ralbidv 3164 . . . . . . . . . 10 (𝑥 = ⟨𝑓, 𝑢⟩ → (∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
116107, 115syl5bb 286 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → (∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
117116ralxp 5676 . . . . . . . 8 (∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
11899, 117sylibr 237 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
119118r19.21bi 3173 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → ∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
120119r19.21bi 3173 . . . . 5 (((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → (𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
121120anasss 470 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))) → (𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
12228adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑄 ∈ Cat)
1232adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
124 eqid 2798 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
125 eqid 2798 . . . . . . . . . . 11 (Id‘𝐶) = (Id‘𝐶)
126 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐶 Func 𝐷))
127 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑢 ∈ (Base‘𝐶))
12818, 122, 123, 20, 4, 124, 125, 25, 126, 127xpcid 17431 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩) = ⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩)
129128fveq2d 6649 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩))
130 df-ov 7138 . . . . . . . . 9 (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩)
131129, 130eqtr4di 2851 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)))
1323adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
133 eqid 2798 . . . . . . . . 9 (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)
13420, 91, 124, 122, 126catidcl 16945 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝑄)‘𝑓) ∈ (𝑓(𝐶 Nat 𝐷)𝑓))
1354, 5, 125, 123, 127catidcl 16945 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑢) ∈ (𝑢(Hom ‘𝐶)𝑢))
1361, 123, 132, 4, 5, 6, 7, 126, 126, 127, 127, 133, 134, 135evlf2val 17461 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)) = ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))))
13730, 126, 32sylancr 590 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
1384, 22, 137funcf1 17128 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
139138, 127ffvelrnd 6829 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((1st𝑓)‘𝑢) ∈ (Base‘𝐷))
14022, 24, 26, 132, 139catidcl 16945 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐷)‘((1st𝑓)‘𝑢)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑢)))
14122, 24, 26, 132, 139, 6, 139, 140catlid 16946 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝐷)‘((1st𝑓)‘𝑢))(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((Id‘𝐷)‘((1st𝑓)‘𝑢))) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
14219, 124, 26, 126fucid 17233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝑄)‘𝑓) = ((Id‘𝐷) ∘ (1st𝑓)))
143142fveq1d 6647 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)‘𝑢) = (((Id‘𝐷) ∘ (1st𝑓))‘𝑢))
144 fvco3 6737 . . . . . . . . . . . 12 (((1st𝑓):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑢 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ (1st𝑓))‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
145138, 127, 144syl2anc 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝐷) ∘ (1st𝑓))‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
146143, 145eqtrd 2833 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
1474, 125, 26, 137, 127funcid 17132 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢)) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
148146, 147oveq12d 7153 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))) = (((Id‘𝐷)‘((1st𝑓)‘𝑢))(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((Id‘𝐷)‘((1st𝑓)‘𝑢))))
1491, 123, 132, 4, 126, 127evlf1 17462 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (𝑓(1st𝐸)𝑢) = ((1st𝑓)‘𝑢))
150149fveq2d 6649 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
151141, 148, 1503eqtr4d 2843 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
152131, 136, 1513eqtrd 2837 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
153152ralrimivva 3156 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
154 id 22 . . . . . . . . . 10 (𝑥 = ⟨𝑓, 𝑢⟩ → 𝑥 = ⟨𝑓, 𝑢⟩)
155154, 154oveq12d 7153 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(2nd𝐸)𝑥) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩))
156 fveq2 6645 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → ((Id‘(𝑄 ×c 𝐶))‘𝑥) = ((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩))
157155, 156fveq12d 6652 . . . . . . . 8 (𝑥 = ⟨𝑓, 𝑢⟩ → ((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)))
158112fveq2d 6649 . . . . . . . 8 (𝑥 = ⟨𝑓, 𝑢⟩ → ((Id‘𝐷)‘((1st𝐸)‘𝑥)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
159157, 158eqeq12d 2814 . . . . . . 7 (𝑥 = ⟨𝑓, 𝑢⟩ → (((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)) ↔ ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢))))
160159ralxp 5676 . . . . . 6 (∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)) ↔ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
161153, 160sylibr 237 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)))
162161r19.21bi 3173 . . . 4 ((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → ((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)))
16323ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝐶 ∈ Cat)
16433ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝐷 ∈ Cat)
165 simp21 1203 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
166 1st2nd2 7710 . . . . . . . . 9 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
167165, 166syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
168167, 165eqeltrrd 2891 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
169 opelxp 5555 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑥) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑥) ∈ (Base‘𝐶)))
170168, 169sylib 221 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑥) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑥) ∈ (Base‘𝐶)))
171 simp22 1204 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
172 1st2nd2 7710 . . . . . . . . 9 (𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
173171, 172syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
174173, 171eqeltrrd 2891 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
175 opelxp 5555 . . . . . . 7 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑦) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑦) ∈ (Base‘𝐶)))
176174, 175sylib 221 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑦) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑦) ∈ (Base‘𝐶)))
177 simp23 1205 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
178 1st2nd2 7710 . . . . . . . . 9 (𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
179177, 178syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
180179, 177eqeltrrd 2891 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
181 opelxp 5555 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑧) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑧) ∈ (Base‘𝐶)))
182180, 181sylib 221 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑧) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑧) ∈ (Base‘𝐶)))
183 simp3l 1198 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦))
18418, 21, 91, 5, 23, 165, 171xpchom 17422 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) = (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
185183, 184eleqtrd 2892 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
186 1st2nd2 7710 . . . . . . . . 9 (𝑓 ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
187185, 186syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
188187, 185eqeltrrd 2891 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑓), (2nd𝑓)⟩ ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
189 opelxp 5555 . . . . . . 7 (⟨(1st𝑓), (2nd𝑓)⟩ ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) ↔ ((1st𝑓) ∈ ((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) ∧ (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
190188, 189sylib 221 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑓) ∈ ((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) ∧ (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
191 simp3r 1199 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))
19218, 21, 91, 5, 23, 171, 177xpchom 17422 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧) = (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
193191, 192eleqtrd 2892 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
194 1st2nd2 7710 . . . . . . . . 9 (𝑔 ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
195193, 194syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
196195, 193eqeltrrd 2891 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑔), (2nd𝑔)⟩ ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
197 opelxp 5555 . . . . . . 7 (⟨(1st𝑔), (2nd𝑔)⟩ ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) ↔ ((1st𝑔) ∈ ((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) ∧ (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
198196, 197sylib 221 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑔) ∈ ((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) ∧ (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
1991, 19, 163, 164, 7, 170, 176, 182, 190, 198evlfcllem 17463 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘(⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩)) = (((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)(⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)))
200167, 179oveq12d 7153 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(2nd𝐸)𝑧) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩))
201167, 173opeq12d 4773 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨𝑥, 𝑦⟩ = ⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩)
202201, 179oveq12d 7153 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧) = (⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩))
203202, 195, 187oveq123d 7156 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓) = (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩))
204200, 203fveq12d 6652 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘(⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩)))
205167fveq2d 6649 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑥) = ((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩))
206173fveq2d 6649 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑦) = ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩))
207205, 206opeq12d 4773 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩ = ⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩)
208179fveq2d 6649 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))
209207, 208oveq12d 7153 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧)) = (⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩)))
210173, 179oveq12d 7153 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑦(2nd𝐸)𝑧) = (⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩))
211210, 195fveq12d 6652 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑦(2nd𝐸)𝑧)‘𝑔) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
212167, 173oveq12d 7153 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(2nd𝐸)𝑦) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩))
213212, 187fveq12d 6652 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑦)‘𝑓) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩))
214209, 211, 213oveq123d 7156 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (((𝑦(2nd𝐸)𝑧)‘𝑔)(⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧))((𝑥(2nd𝐸)𝑦)‘𝑓)) = (((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)(⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)))
215199, 204, 2143eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓)) = (((𝑦(2nd𝐸)𝑧)‘𝑔)(⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧))((𝑥(2nd𝐸)𝑦)‘𝑓)))
21621, 22, 23, 24, 25, 26, 27, 6, 29, 3, 44, 55, 121, 162, 215isfuncd 17127 . . 3 (𝜑 → (1st𝐸)((𝑄 ×c 𝐶) Func 𝐷)(2nd𝐸))
217 df-br 5031 . . 3 ((1st𝐸)((𝑄 ×c 𝐶) Func 𝐷)(2nd𝐸) ↔ ⟨(1st𝐸), (2nd𝐸)⟩ ∈ ((𝑄 ×c 𝐶) Func 𝐷))
218216, 217sylib 221 . 2 (𝜑 → ⟨(1st𝐸), (2nd𝐸)⟩ ∈ ((𝑄 ×c 𝐶) Func 𝐷))
21917, 218eqeltrd 2890 1 (𝜑𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  csb 3828  cop 4531   class class class wbr 5030   × cxp 5517  ccom 5523  Rel wrel 5524   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Idccid 16928   Func cfunc 17116   Nat cnat 17203   FuncCat cfuc 17204   ×c cxpc 17410   evalF cevlf 17451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-func 17120  df-nat 17205  df-fuc 17206  df-xpc 17414  df-evlf 17455
This theorem is referenced by:  uncfcl  17477  uncf1  17478  uncf2  17479  yonedalem1  17514
  Copyright terms: Public domain W3C validator