MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfcl Structured version   Visualization version   GIF version

Theorem evlfcl 18171
Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors 𝐢⟢𝐷, and the second parameter in 𝐷. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfcl.e 𝐸 = (𝐢 evalF 𝐷)
evlfcl.q 𝑄 = (𝐢 FuncCat 𝐷)
evlfcl.c (πœ‘ β†’ 𝐢 ∈ Cat)
evlfcl.d (πœ‘ β†’ 𝐷 ∈ Cat)
Assertion
Ref Expression
evlfcl (πœ‘ β†’ 𝐸 ∈ ((𝑄 Γ—c 𝐢) Func 𝐷))

Proof of Theorem evlfcl
Dummy variables 𝑓 π‘Ž 𝑔 β„Ž π‘š 𝑛 𝑒 𝑣 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlfcl.e . . . . 5 𝐸 = (𝐢 evalF 𝐷)
2 evlfcl.c . . . . 5 (πœ‘ β†’ 𝐢 ∈ Cat)
3 evlfcl.d . . . . 5 (πœ‘ β†’ 𝐷 ∈ Cat)
4 eqid 2732 . . . . 5 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
5 eqid 2732 . . . . 5 (Hom β€˜πΆ) = (Hom β€˜πΆ)
6 eqid 2732 . . . . 5 (compβ€˜π·) = (compβ€˜π·)
7 eqid 2732 . . . . 5 (𝐢 Nat 𝐷) = (𝐢 Nat 𝐷)
81, 2, 3, 4, 5, 6, 7evlfval 18166 . . . 4 (πœ‘ β†’ 𝐸 = ⟨(𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)), (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))))⟩)
9 ovex 7438 . . . . . 6 (𝐢 Func 𝐷) ∈ V
10 fvex 6901 . . . . . 6 (Baseβ€˜πΆ) ∈ V
119, 10mpoex 8062 . . . . 5 (𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)) ∈ V
129, 10xpex 7736 . . . . . 6 ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∈ V
1312, 12mpoex 8062 . . . . 5 (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”)))) ∈ V
1411, 13opelvv 5714 . . . 4 ⟨(𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)), (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))))⟩ ∈ (V Γ— V)
158, 14eqeltrdi 2841 . . 3 (πœ‘ β†’ 𝐸 ∈ (V Γ— V))
16 1st2nd2 8010 . . 3 (𝐸 ∈ (V Γ— V) β†’ 𝐸 = ⟨(1st β€˜πΈ), (2nd β€˜πΈ)⟩)
1715, 16syl 17 . 2 (πœ‘ β†’ 𝐸 = ⟨(1st β€˜πΈ), (2nd β€˜πΈ)⟩)
18 eqid 2732 . . . . 5 (𝑄 Γ—c 𝐢) = (𝑄 Γ—c 𝐢)
19 evlfcl.q . . . . . 6 𝑄 = (𝐢 FuncCat 𝐷)
2019fucbas 17908 . . . . 5 (𝐢 Func 𝐷) = (Baseβ€˜π‘„)
2118, 20, 4xpcbas 18126 . . . 4 ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) = (Baseβ€˜(𝑄 Γ—c 𝐢))
22 eqid 2732 . . . 4 (Baseβ€˜π·) = (Baseβ€˜π·)
23 eqid 2732 . . . 4 (Hom β€˜(𝑄 Γ—c 𝐢)) = (Hom β€˜(𝑄 Γ—c 𝐢))
24 eqid 2732 . . . 4 (Hom β€˜π·) = (Hom β€˜π·)
25 eqid 2732 . . . 4 (Idβ€˜(𝑄 Γ—c 𝐢)) = (Idβ€˜(𝑄 Γ—c 𝐢))
26 eqid 2732 . . . 4 (Idβ€˜π·) = (Idβ€˜π·)
27 eqid 2732 . . . 4 (compβ€˜(𝑄 Γ—c 𝐢)) = (compβ€˜(𝑄 Γ—c 𝐢))
2819, 2, 3fuccat 17919 . . . . 5 (πœ‘ β†’ 𝑄 ∈ Cat)
2918, 28, 2xpccat 18138 . . . 4 (πœ‘ β†’ (𝑄 Γ—c 𝐢) ∈ Cat)
30 relfunc 17808 . . . . . . . . . . 11 Rel (𝐢 Func 𝐷)
31 simpr 485 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑓 ∈ (𝐢 Func 𝐷)) β†’ 𝑓 ∈ (𝐢 Func 𝐷))
32 1st2ndbr 8024 . . . . . . . . . . 11 ((Rel (𝐢 Func 𝐷) ∧ 𝑓 ∈ (𝐢 Func 𝐷)) β†’ (1st β€˜π‘“)(𝐢 Func 𝐷)(2nd β€˜π‘“))
3330, 31, 32sylancr 587 . . . . . . . . . 10 ((πœ‘ ∧ 𝑓 ∈ (𝐢 Func 𝐷)) β†’ (1st β€˜π‘“)(𝐢 Func 𝐷)(2nd β€˜π‘“))
344, 22, 33funcf1 17812 . . . . . . . . 9 ((πœ‘ ∧ 𝑓 ∈ (𝐢 Func 𝐷)) β†’ (1st β€˜π‘“):(Baseβ€˜πΆ)⟢(Baseβ€˜π·))
3534ffvelcdmda 7083 . . . . . . . 8 (((πœ‘ ∧ 𝑓 ∈ (𝐢 Func 𝐷)) ∧ π‘₯ ∈ (Baseβ€˜πΆ)) β†’ ((1st β€˜π‘“)β€˜π‘₯) ∈ (Baseβ€˜π·))
3635ralrimiva 3146 . . . . . . 7 ((πœ‘ ∧ 𝑓 ∈ (𝐢 Func 𝐷)) β†’ βˆ€π‘₯ ∈ (Baseβ€˜πΆ)((1st β€˜π‘“)β€˜π‘₯) ∈ (Baseβ€˜π·))
3736ralrimiva 3146 . . . . . 6 (πœ‘ β†’ βˆ€π‘“ ∈ (𝐢 Func 𝐷)βˆ€π‘₯ ∈ (Baseβ€˜πΆ)((1st β€˜π‘“)β€˜π‘₯) ∈ (Baseβ€˜π·))
38 eqid 2732 . . . . . . 7 (𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)) = (𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯))
3938fmpo 8050 . . . . . 6 (βˆ€π‘“ ∈ (𝐢 Func 𝐷)βˆ€π‘₯ ∈ (Baseβ€˜πΆ)((1st β€˜π‘“)β€˜π‘₯) ∈ (Baseβ€˜π·) ↔ (𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)):((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))⟢(Baseβ€˜π·))
4037, 39sylib 217 . . . . 5 (πœ‘ β†’ (𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)):((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))⟢(Baseβ€˜π·))
4111, 13op1std 7981 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)), (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))))⟩ β†’ (1st β€˜πΈ) = (𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)))
428, 41syl 17 . . . . . 6 (πœ‘ β†’ (1st β€˜πΈ) = (𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)))
4342feq1d 6699 . . . . 5 (πœ‘ β†’ ((1st β€˜πΈ):((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))⟢(Baseβ€˜π·) ↔ (𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)):((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))⟢(Baseβ€˜π·)))
4440, 43mpbird 256 . . . 4 (πœ‘ β†’ (1st β€˜πΈ):((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))⟢(Baseβ€˜π·))
45 eqid 2732 . . . . . 6 (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”)))) = (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))))
46 ovex 7438 . . . . . . . . 9 (π‘š(𝐢 Nat 𝐷)𝑛) ∈ V
47 ovex 7438 . . . . . . . . 9 ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ∈ V
4846, 47mpoex 8062 . . . . . . . 8 (π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))) ∈ V
4948csbex 5310 . . . . . . 7 ⦋(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))) ∈ V
5049csbex 5310 . . . . . 6 ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))) ∈ V
5145, 50fnmpoi 8052 . . . . 5 (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”)))) Fn (((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) Γ— ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))
5211, 13op2ndd 7982 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐢 Func 𝐷), π‘₯ ∈ (Baseβ€˜πΆ) ↦ ((1st β€˜π‘“)β€˜π‘₯)), (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”))))⟩ β†’ (2nd β€˜πΈ) = (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”)))))
538, 52syl 17 . . . . . 6 (πœ‘ β†’ (2nd β€˜πΈ) = (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”)))))
5453fneq1d 6639 . . . . 5 (πœ‘ β†’ ((2nd β€˜πΈ) Fn (((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) Γ— ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ↔ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)), 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↦ ⦋(1st β€˜π‘₯) / π‘šβ¦Œβ¦‹(1st β€˜π‘¦) / π‘›β¦Œ(π‘Ž ∈ (π‘š(𝐢 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦)) ↦ ((π‘Žβ€˜(2nd β€˜π‘¦))(⟨((1st β€˜π‘š)β€˜(2nd β€˜π‘₯)), ((1st β€˜π‘š)β€˜(2nd β€˜π‘¦))⟩(compβ€˜π·)((1st β€˜π‘›)β€˜(2nd β€˜π‘¦)))(((2nd β€˜π‘₯)(2nd β€˜π‘š)(2nd β€˜π‘¦))β€˜π‘”)))) Fn (((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) Γ— ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))))
5551, 54mpbiri 257 . . . 4 (πœ‘ β†’ (2nd β€˜πΈ) Fn (((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) Γ— ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))))
563ad2antrr 724 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ 𝐷 ∈ Cat)
5756adantr 481 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ 𝐷 ∈ Cat)
58 simplrl 775 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ 𝑓 ∈ (𝐢 Func 𝐷))
5930, 58, 32sylancr 587 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (1st β€˜π‘“)(𝐢 Func 𝐷)(2nd β€˜π‘“))
604, 22, 59funcf1 17812 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (1st β€˜π‘“):(Baseβ€˜πΆ)⟢(Baseβ€˜π·))
6160adantr 481 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ (1st β€˜π‘“):(Baseβ€˜πΆ)⟢(Baseβ€˜π·))
62 simplrr 776 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ 𝑒 ∈ (Baseβ€˜πΆ))
6362adantr 481 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ 𝑒 ∈ (Baseβ€˜πΆ))
6461, 63ffvelcdmd 7084 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ ((1st β€˜π‘“)β€˜π‘’) ∈ (Baseβ€˜π·))
65 simplrr 776 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ 𝑣 ∈ (Baseβ€˜πΆ))
6661, 65ffvelcdmd 7084 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ ((1st β€˜π‘“)β€˜π‘£) ∈ (Baseβ€˜π·))
67 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ 𝑔 ∈ (𝐢 Func 𝐷))
68 1st2ndbr 8024 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝐢 Func 𝐷) ∧ 𝑔 ∈ (𝐢 Func 𝐷)) β†’ (1st β€˜π‘”)(𝐢 Func 𝐷)(2nd β€˜π‘”))
6930, 67, 68sylancr 587 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (1st β€˜π‘”)(𝐢 Func 𝐷)(2nd β€˜π‘”))
704, 22, 69funcf1 17812 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (1st β€˜π‘”):(Baseβ€˜πΆ)⟢(Baseβ€˜π·))
7170adantr 481 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ (1st β€˜π‘”):(Baseβ€˜πΆ)⟢(Baseβ€˜π·))
7271, 65ffvelcdmd 7084 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ ((1st β€˜π‘”)β€˜π‘£) ∈ (Baseβ€˜π·))
73 simprr 771 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ 𝑣 ∈ (Baseβ€˜πΆ))
744, 5, 24, 59, 62, 73funcf2 17814 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (𝑒(2nd β€˜π‘“)𝑣):(𝑒(Hom β€˜πΆ)𝑣)⟢(((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘“)β€˜π‘£)))
7574adantr 481 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ (𝑒(2nd β€˜π‘“)𝑣):(𝑒(Hom β€˜πΆ)𝑣)⟢(((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘“)β€˜π‘£)))
76 simprr 771 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))
7775, 76ffvelcdmd 7084 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ ((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž) ∈ (((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘“)β€˜π‘£)))
78 simprl 769 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔))
797, 78nat1st2nd 17898 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ π‘Ž ∈ (⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩(𝐢 Nat 𝐷)⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩))
807, 79, 4, 24, 65natcl 17900 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ (π‘Žβ€˜π‘£) ∈ (((1st β€˜π‘“)β€˜π‘£)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)))
8122, 24, 6, 57, 64, 66, 72, 77, 80catcocl 17625 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) ∧ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔) ∧ β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣))) β†’ ((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž)) ∈ (((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)))
8281ralrimivva 3200 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ βˆ€π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔)βˆ€β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣)((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž)) ∈ (((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)))
83 eqid 2732 . . . . . . . . . . . . . 14 (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔), β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣) ↦ ((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž))) = (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔), β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣) ↦ ((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž)))
8483fmpo 8050 . . . . . . . . . . . . 13 (βˆ€π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔)βˆ€β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣)((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž)) ∈ (((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)) ↔ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔), β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣) ↦ ((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž))):((𝑓(𝐢 Nat 𝐷)𝑔) Γ— (𝑒(Hom β€˜πΆ)𝑣))⟢(((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)))
8582, 84sylib 217 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔), β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣) ↦ ((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž))):((𝑓(𝐢 Nat 𝐷)𝑔) Γ— (𝑒(Hom β€˜πΆ)𝑣))⟢(((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)))
862ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ 𝐢 ∈ Cat)
87 eqid 2732 . . . . . . . . . . . . . 14 (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©) = (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©)
881, 86, 56, 4, 5, 6, 7, 58, 67, 62, 73, 87evlf2 18167 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©) = (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔), β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣) ↦ ((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž))))
8988feq1d 6699 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):((𝑓(𝐢 Nat 𝐷)𝑔) Γ— (𝑒(Hom β€˜πΆ)𝑣))⟢(((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)) ↔ (π‘Ž ∈ (𝑓(𝐢 Nat 𝐷)𝑔), β„Ž ∈ (𝑒(Hom β€˜πΆ)𝑣) ↦ ((π‘Žβ€˜π‘£)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘£)⟩(compβ€˜π·)((1st β€˜π‘”)β€˜π‘£))((𝑒(2nd β€˜π‘“)𝑣)β€˜β„Ž))):((𝑓(𝐢 Nat 𝐷)𝑔) Γ— (𝑒(Hom β€˜πΆ)𝑣))⟢(((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£))))
9085, 89mpbird 256 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):((𝑓(𝐢 Nat 𝐷)𝑔) Γ— (𝑒(Hom β€˜πΆ)𝑣))⟢(((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)))
9119, 7fuchom 17909 . . . . . . . . . . . . 13 (𝐢 Nat 𝐷) = (Hom β€˜π‘„)
9218, 20, 4, 91, 5, 58, 62, 67, 73, 23xpchom2 18134 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©) = ((𝑓(𝐢 Nat 𝐷)𝑔) Γ— (𝑒(Hom β€˜πΆ)𝑣)))
931, 86, 56, 4, 58, 62evlf1 18169 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (𝑓(1st β€˜πΈ)𝑒) = ((1st β€˜π‘“)β€˜π‘’))
941, 86, 56, 4, 67, 73evlf1 18169 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (𝑔(1st β€˜πΈ)𝑣) = ((1st β€˜π‘”)β€˜π‘£))
9593, 94oveq12d 7423 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ ((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)) = (((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£)))
9692, 95feq23d 6709 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)) ↔ (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):((𝑓(𝐢 Nat 𝐷)𝑔) Γ— (𝑒(Hom β€˜πΆ)𝑣))⟢(((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘”)β€˜π‘£))))
9790, 96mpbird 256 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) ∧ (𝑔 ∈ (𝐢 Func 𝐷) ∧ 𝑣 ∈ (Baseβ€˜πΆ))) β†’ (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)))
9897ralrimivva 3200 . . . . . . . . 9 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ βˆ€π‘” ∈ (𝐢 Func 𝐷)βˆ€π‘£ ∈ (Baseβ€˜πΆ)(βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)))
9998ralrimivva 3200 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘“ ∈ (𝐢 Func 𝐷)βˆ€π‘’ ∈ (Baseβ€˜πΆ)βˆ€π‘” ∈ (𝐢 Func 𝐷)βˆ€π‘£ ∈ (Baseβ€˜πΆ)(βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)))
100 oveq2 7413 . . . . . . . . . . . 12 (𝑦 = βŸ¨π‘”, π‘£βŸ© β†’ (π‘₯(2nd β€˜πΈ)𝑦) = (π‘₯(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©))
101 oveq2 7413 . . . . . . . . . . . 12 (𝑦 = βŸ¨π‘”, π‘£βŸ© β†’ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) = (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©))
102 fveq2 6888 . . . . . . . . . . . . . 14 (𝑦 = βŸ¨π‘”, π‘£βŸ© β†’ ((1st β€˜πΈ)β€˜π‘¦) = ((1st β€˜πΈ)β€˜βŸ¨π‘”, π‘£βŸ©))
103 df-ov 7408 . . . . . . . . . . . . . 14 (𝑔(1st β€˜πΈ)𝑣) = ((1st β€˜πΈ)β€˜βŸ¨π‘”, π‘£βŸ©)
104102, 103eqtr4di 2790 . . . . . . . . . . . . 13 (𝑦 = βŸ¨π‘”, π‘£βŸ© β†’ ((1st β€˜πΈ)β€˜π‘¦) = (𝑔(1st β€˜πΈ)𝑣))
105104oveq2d 7421 . . . . . . . . . . . 12 (𝑦 = βŸ¨π‘”, π‘£βŸ© β†’ (((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)) = (((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)))
106100, 101, 105feq123d 6703 . . . . . . . . . . 11 (𝑦 = βŸ¨π‘”, π‘£βŸ© β†’ ((π‘₯(2nd β€˜πΈ)𝑦):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)) ↔ (π‘₯(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣))))
107106ralxp 5839 . . . . . . . . . 10 (βˆ€π‘¦ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))(π‘₯(2nd β€˜πΈ)𝑦):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)) ↔ βˆ€π‘” ∈ (𝐢 Func 𝐷)βˆ€π‘£ ∈ (Baseβ€˜πΆ)(π‘₯(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)))
108 oveq1 7412 . . . . . . . . . . . 12 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ (π‘₯(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©) = (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©))
109 oveq1 7412 . . . . . . . . . . . 12 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©) = (βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©))
110 fveq2 6888 . . . . . . . . . . . . . 14 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ ((1st β€˜πΈ)β€˜π‘₯) = ((1st β€˜πΈ)β€˜βŸ¨π‘“, π‘’βŸ©))
111 df-ov 7408 . . . . . . . . . . . . . 14 (𝑓(1st β€˜πΈ)𝑒) = ((1st β€˜πΈ)β€˜βŸ¨π‘“, π‘’βŸ©)
112110, 111eqtr4di 2790 . . . . . . . . . . . . 13 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ ((1st β€˜πΈ)β€˜π‘₯) = (𝑓(1st β€˜πΈ)𝑒))
113112oveq1d 7420 . . . . . . . . . . . 12 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ (((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)) = ((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)))
114108, 109, 113feq123d 6703 . . . . . . . . . . 11 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ ((π‘₯(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)) ↔ (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣))))
1151142ralbidv 3218 . . . . . . . . . 10 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ (βˆ€π‘” ∈ (𝐢 Func 𝐷)βˆ€π‘£ ∈ (Baseβ€˜πΆ)(π‘₯(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)) ↔ βˆ€π‘” ∈ (𝐢 Func 𝐷)βˆ€π‘£ ∈ (Baseβ€˜πΆ)(βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣))))
116107, 115bitrid 282 . . . . . . . . 9 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ (βˆ€π‘¦ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))(π‘₯(2nd β€˜πΈ)𝑦):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)) ↔ βˆ€π‘” ∈ (𝐢 Func 𝐷)βˆ€π‘£ ∈ (Baseβ€˜πΆ)(βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣))))
117116ralxp 5839 . . . . . . . 8 (βˆ€π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))βˆ€π‘¦ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))(π‘₯(2nd β€˜πΈ)𝑦):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)) ↔ βˆ€π‘“ ∈ (𝐢 Func 𝐷)βˆ€π‘’ ∈ (Baseβ€˜πΆ)βˆ€π‘” ∈ (𝐢 Func 𝐷)βˆ€π‘£ ∈ (Baseβ€˜πΆ)(βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘”, π‘£βŸ©):(βŸ¨π‘“, π‘’βŸ©(Hom β€˜(𝑄 Γ—c 𝐢))βŸ¨π‘”, π‘£βŸ©)⟢((𝑓(1st β€˜πΈ)𝑒)(Hom β€˜π·)(𝑔(1st β€˜πΈ)𝑣)))
11899, 117sylibr 233 . . . . . . 7 (πœ‘ β†’ βˆ€π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))βˆ€π‘¦ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))(π‘₯(2nd β€˜πΈ)𝑦):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)))
119118r19.21bi 3248 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) β†’ βˆ€π‘¦ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))(π‘₯(2nd β€˜πΈ)𝑦):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)))
120119r19.21bi 3248 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) β†’ (π‘₯(2nd β€˜πΈ)𝑦):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)))
121120anasss 467 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))) β†’ (π‘₯(2nd β€˜πΈ)𝑦):(π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦)⟢(((1st β€˜πΈ)β€˜π‘₯)(Hom β€˜π·)((1st β€˜πΈ)β€˜π‘¦)))
12228adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ 𝑄 ∈ Cat)
1232adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ 𝐢 ∈ Cat)
124 eqid 2732 . . . . . . . . . . 11 (Idβ€˜π‘„) = (Idβ€˜π‘„)
125 eqid 2732 . . . . . . . . . . 11 (Idβ€˜πΆ) = (Idβ€˜πΆ)
126 simprl 769 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ 𝑓 ∈ (𝐢 Func 𝐷))
127 simprr 771 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ 𝑒 ∈ (Baseβ€˜πΆ))
12818, 122, 123, 20, 4, 124, 125, 25, 126, 127xpcid 18137 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©) = ⟨((Idβ€˜π‘„)β€˜π‘“), ((Idβ€˜πΆ)β€˜π‘’)⟩)
129128fveq2d 6892 . . . . . . . . 9 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©)) = ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜βŸ¨((Idβ€˜π‘„)β€˜π‘“), ((Idβ€˜πΆ)β€˜π‘’)⟩))
130 df-ov 7408 . . . . . . . . 9 (((Idβ€˜π‘„)β€˜π‘“)(βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)((Idβ€˜πΆ)β€˜π‘’)) = ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜βŸ¨((Idβ€˜π‘„)β€˜π‘“), ((Idβ€˜πΆ)β€˜π‘’)⟩)
131129, 130eqtr4di 2790 . . . . . . . 8 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©)) = (((Idβ€˜π‘„)β€˜π‘“)(βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)((Idβ€˜πΆ)β€˜π‘’)))
1323adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ 𝐷 ∈ Cat)
133 eqid 2732 . . . . . . . . 9 (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©) = (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)
13420, 91, 124, 122, 126catidcl 17622 . . . . . . . . 9 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((Idβ€˜π‘„)β€˜π‘“) ∈ (𝑓(𝐢 Nat 𝐷)𝑓))
1354, 5, 125, 123, 127catidcl 17622 . . . . . . . . 9 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((Idβ€˜πΆ)β€˜π‘’) ∈ (𝑒(Hom β€˜πΆ)𝑒))
1361, 123, 132, 4, 5, 6, 7, 126, 126, 127, 127, 133, 134, 135evlf2val 18168 . . . . . . . 8 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ (((Idβ€˜π‘„)β€˜π‘“)(βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)((Idβ€˜πΆ)β€˜π‘’)) = ((((Idβ€˜π‘„)β€˜π‘“)β€˜π‘’)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘’)⟩(compβ€˜π·)((1st β€˜π‘“)β€˜π‘’))((𝑒(2nd β€˜π‘“)𝑒)β€˜((Idβ€˜πΆ)β€˜π‘’))))
13730, 126, 32sylancr 587 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ (1st β€˜π‘“)(𝐢 Func 𝐷)(2nd β€˜π‘“))
1384, 22, 137funcf1 17812 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ (1st β€˜π‘“):(Baseβ€˜πΆ)⟢(Baseβ€˜π·))
139138, 127ffvelcdmd 7084 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((1st β€˜π‘“)β€˜π‘’) ∈ (Baseβ€˜π·))
14022, 24, 26, 132, 139catidcl 17622 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’)) ∈ (((1st β€˜π‘“)β€˜π‘’)(Hom β€˜π·)((1st β€˜π‘“)β€˜π‘’)))
14122, 24, 26, 132, 139, 6, 139, 140catlid 17623 . . . . . . . . 9 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ (((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’))(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘’)⟩(compβ€˜π·)((1st β€˜π‘“)β€˜π‘’))((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’))) = ((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’)))
14219, 124, 26, 126fucid 17920 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((Idβ€˜π‘„)β€˜π‘“) = ((Idβ€˜π·) ∘ (1st β€˜π‘“)))
143142fveq1d 6890 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ (((Idβ€˜π‘„)β€˜π‘“)β€˜π‘’) = (((Idβ€˜π·) ∘ (1st β€˜π‘“))β€˜π‘’))
144 fvco3 6987 . . . . . . . . . . . 12 (((1st β€˜π‘“):(Baseβ€˜πΆ)⟢(Baseβ€˜π·) ∧ 𝑒 ∈ (Baseβ€˜πΆ)) β†’ (((Idβ€˜π·) ∘ (1st β€˜π‘“))β€˜π‘’) = ((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’)))
145138, 127, 144syl2anc 584 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ (((Idβ€˜π·) ∘ (1st β€˜π‘“))β€˜π‘’) = ((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’)))
146143, 145eqtrd 2772 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ (((Idβ€˜π‘„)β€˜π‘“)β€˜π‘’) = ((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’)))
1474, 125, 26, 137, 127funcid 17816 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((𝑒(2nd β€˜π‘“)𝑒)β€˜((Idβ€˜πΆ)β€˜π‘’)) = ((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’)))
148146, 147oveq12d 7423 . . . . . . . . 9 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((((Idβ€˜π‘„)β€˜π‘“)β€˜π‘’)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘’)⟩(compβ€˜π·)((1st β€˜π‘“)β€˜π‘’))((𝑒(2nd β€˜π‘“)𝑒)β€˜((Idβ€˜πΆ)β€˜π‘’))) = (((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’))(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘’)⟩(compβ€˜π·)((1st β€˜π‘“)β€˜π‘’))((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’))))
1491, 123, 132, 4, 126, 127evlf1 18169 . . . . . . . . . 10 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ (𝑓(1st β€˜πΈ)𝑒) = ((1st β€˜π‘“)β€˜π‘’))
150149fveq2d 6892 . . . . . . . . 9 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((Idβ€˜π·)β€˜(𝑓(1st β€˜πΈ)𝑒)) = ((Idβ€˜π·)β€˜((1st β€˜π‘“)β€˜π‘’)))
151141, 148, 1503eqtr4d 2782 . . . . . . . 8 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((((Idβ€˜π‘„)β€˜π‘“)β€˜π‘’)(⟨((1st β€˜π‘“)β€˜π‘’), ((1st β€˜π‘“)β€˜π‘’)⟩(compβ€˜π·)((1st β€˜π‘“)β€˜π‘’))((𝑒(2nd β€˜π‘“)𝑒)β€˜((Idβ€˜πΆ)β€˜π‘’))) = ((Idβ€˜π·)β€˜(𝑓(1st β€˜πΈ)𝑒)))
152131, 136, 1513eqtrd 2776 . . . . . . 7 ((πœ‘ ∧ (𝑓 ∈ (𝐢 Func 𝐷) ∧ 𝑒 ∈ (Baseβ€˜πΆ))) β†’ ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©)) = ((Idβ€˜π·)β€˜(𝑓(1st β€˜πΈ)𝑒)))
153152ralrimivva 3200 . . . . . 6 (πœ‘ β†’ βˆ€π‘“ ∈ (𝐢 Func 𝐷)βˆ€π‘’ ∈ (Baseβ€˜πΆ)((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©)) = ((Idβ€˜π·)β€˜(𝑓(1st β€˜πΈ)𝑒)))
154 id 22 . . . . . . . . . 10 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ π‘₯ = βŸ¨π‘“, π‘’βŸ©)
155154, 154oveq12d 7423 . . . . . . . . 9 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ (π‘₯(2nd β€˜πΈ)π‘₯) = (βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©))
156 fveq2 6888 . . . . . . . . 9 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ ((Idβ€˜(𝑄 Γ—c 𝐢))β€˜π‘₯) = ((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©))
157155, 156fveq12d 6895 . . . . . . . 8 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ ((π‘₯(2nd β€˜πΈ)π‘₯)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜π‘₯)) = ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©)))
158112fveq2d 6892 . . . . . . . 8 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ ((Idβ€˜π·)β€˜((1st β€˜πΈ)β€˜π‘₯)) = ((Idβ€˜π·)β€˜(𝑓(1st β€˜πΈ)𝑒)))
159157, 158eqeq12d 2748 . . . . . . 7 (π‘₯ = βŸ¨π‘“, π‘’βŸ© β†’ (((π‘₯(2nd β€˜πΈ)π‘₯)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜π‘₯)) = ((Idβ€˜π·)β€˜((1st β€˜πΈ)β€˜π‘₯)) ↔ ((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©)) = ((Idβ€˜π·)β€˜(𝑓(1st β€˜πΈ)𝑒))))
160159ralxp 5839 . . . . . 6 (βˆ€π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))((π‘₯(2nd β€˜πΈ)π‘₯)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜π‘₯)) = ((Idβ€˜π·)β€˜((1st β€˜πΈ)β€˜π‘₯)) ↔ βˆ€π‘“ ∈ (𝐢 Func 𝐷)βˆ€π‘’ ∈ (Baseβ€˜πΆ)((βŸ¨π‘“, π‘’βŸ©(2nd β€˜πΈ)βŸ¨π‘“, π‘’βŸ©)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜βŸ¨π‘“, π‘’βŸ©)) = ((Idβ€˜π·)β€˜(𝑓(1st β€˜πΈ)𝑒)))
161153, 160sylibr 233 . . . . 5 (πœ‘ β†’ βˆ€π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))((π‘₯(2nd β€˜πΈ)π‘₯)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜π‘₯)) = ((Idβ€˜π·)β€˜((1st β€˜πΈ)β€˜π‘₯)))
162161r19.21bi 3248 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) β†’ ((π‘₯(2nd β€˜πΈ)π‘₯)β€˜((Idβ€˜(𝑄 Γ—c 𝐢))β€˜π‘₯)) = ((Idβ€˜π·)β€˜((1st β€˜πΈ)β€˜π‘₯)))
16323ad2ant1 1133 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝐢 ∈ Cat)
16433ad2ant1 1133 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝐷 ∈ Cat)
165 simp21 1206 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))
166 1st2nd2 8010 . . . . . . . . 9 (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) β†’ π‘₯ = ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩)
167165, 166syl 17 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ π‘₯ = ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩)
168167, 165eqeltrrd 2834 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))
169 opelxp 5711 . . . . . . 7 (⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↔ ((1st β€˜π‘₯) ∈ (𝐢 Func 𝐷) ∧ (2nd β€˜π‘₯) ∈ (Baseβ€˜πΆ)))
170168, 169sylib 217 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((1st β€˜π‘₯) ∈ (𝐢 Func 𝐷) ∧ (2nd β€˜π‘₯) ∈ (Baseβ€˜πΆ)))
171 simp22 1207 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))
172 1st2nd2 8010 . . . . . . . . 9 (𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) β†’ 𝑦 = ⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)
173171, 172syl 17 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑦 = ⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)
174173, 171eqeltrrd 2834 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))
175 opelxp 5711 . . . . . . 7 (⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↔ ((1st β€˜π‘¦) ∈ (𝐢 Func 𝐷) ∧ (2nd β€˜π‘¦) ∈ (Baseβ€˜πΆ)))
176174, 175sylib 217 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((1st β€˜π‘¦) ∈ (𝐢 Func 𝐷) ∧ (2nd β€˜π‘¦) ∈ (Baseβ€˜πΆ)))
177 simp23 1208 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))
178 1st2nd2 8010 . . . . . . . . 9 (𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) β†’ 𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)
179177, 178syl 17 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)
180179, 177eqeltrrd 2834 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)))
181 opelxp 5711 . . . . . . 7 (⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ↔ ((1st β€˜π‘§) ∈ (𝐢 Func 𝐷) ∧ (2nd β€˜π‘§) ∈ (Baseβ€˜πΆ)))
182180, 181sylib 217 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((1st β€˜π‘§) ∈ (𝐢 Func 𝐷) ∧ (2nd β€˜π‘§) ∈ (Baseβ€˜πΆ)))
183 simp3l 1201 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦))
18418, 21, 91, 5, 23, 165, 171xpchom 18128 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) = (((1st β€˜π‘₯)(𝐢 Nat 𝐷)(1st β€˜π‘¦)) Γ— ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦))))
185183, 184eleqtrd 2835 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑓 ∈ (((1st β€˜π‘₯)(𝐢 Nat 𝐷)(1st β€˜π‘¦)) Γ— ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦))))
186 1st2nd2 8010 . . . . . . . . 9 (𝑓 ∈ (((1st β€˜π‘₯)(𝐢 Nat 𝐷)(1st β€˜π‘¦)) Γ— ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦))) β†’ 𝑓 = ⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩)
187185, 186syl 17 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑓 = ⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩)
188187, 185eqeltrrd 2834 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩ ∈ (((1st β€˜π‘₯)(𝐢 Nat 𝐷)(1st β€˜π‘¦)) Γ— ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦))))
189 opelxp 5711 . . . . . . 7 (⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩ ∈ (((1st β€˜π‘₯)(𝐢 Nat 𝐷)(1st β€˜π‘¦)) Γ— ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦))) ↔ ((1st β€˜π‘“) ∈ ((1st β€˜π‘₯)(𝐢 Nat 𝐷)(1st β€˜π‘¦)) ∧ (2nd β€˜π‘“) ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦))))
190188, 189sylib 217 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((1st β€˜π‘“) ∈ ((1st β€˜π‘₯)(𝐢 Nat 𝐷)(1st β€˜π‘¦)) ∧ (2nd β€˜π‘“) ∈ ((2nd β€˜π‘₯)(Hom β€˜πΆ)(2nd β€˜π‘¦))))
191 simp3r 1202 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))
19218, 21, 91, 5, 23, 171, 177xpchom 18128 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧) = (((1st β€˜π‘¦)(𝐢 Nat 𝐷)(1st β€˜π‘§)) Γ— ((2nd β€˜π‘¦)(Hom β€˜πΆ)(2nd β€˜π‘§))))
193191, 192eleqtrd 2835 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑔 ∈ (((1st β€˜π‘¦)(𝐢 Nat 𝐷)(1st β€˜π‘§)) Γ— ((2nd β€˜π‘¦)(Hom β€˜πΆ)(2nd β€˜π‘§))))
194 1st2nd2 8010 . . . . . . . . 9 (𝑔 ∈ (((1st β€˜π‘¦)(𝐢 Nat 𝐷)(1st β€˜π‘§)) Γ— ((2nd β€˜π‘¦)(Hom β€˜πΆ)(2nd β€˜π‘§))) β†’ 𝑔 = ⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩)
195193, 194syl 17 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ 𝑔 = ⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩)
196195, 193eqeltrrd 2834 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩ ∈ (((1st β€˜π‘¦)(𝐢 Nat 𝐷)(1st β€˜π‘§)) Γ— ((2nd β€˜π‘¦)(Hom β€˜πΆ)(2nd β€˜π‘§))))
197 opelxp 5711 . . . . . . 7 (⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩ ∈ (((1st β€˜π‘¦)(𝐢 Nat 𝐷)(1st β€˜π‘§)) Γ— ((2nd β€˜π‘¦)(Hom β€˜πΆ)(2nd β€˜π‘§))) ↔ ((1st β€˜π‘”) ∈ ((1st β€˜π‘¦)(𝐢 Nat 𝐷)(1st β€˜π‘§)) ∧ (2nd β€˜π‘”) ∈ ((2nd β€˜π‘¦)(Hom β€˜πΆ)(2nd β€˜π‘§))))
198196, 197sylib 217 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((1st β€˜π‘”) ∈ ((1st β€˜π‘¦)(𝐢 Nat 𝐷)(1st β€˜π‘§)) ∧ (2nd β€˜π‘”) ∈ ((2nd β€˜π‘¦)(Hom β€˜πΆ)(2nd β€˜π‘§))))
1991, 19, 163, 164, 7, 170, 176, 182, 190, 198evlfcllem 18170 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)β€˜(⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩(⟨⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩, ⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩⟩(compβ€˜(𝑄 Γ—c 𝐢))⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩)) = (((⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)β€˜βŸ¨(1st β€˜π‘”), (2nd β€˜π‘”)⟩)(⟨((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩), ((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)⟩(compβ€˜π·)((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘§), (2nd β€˜π‘§)⟩))((⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)β€˜βŸ¨(1st β€˜π‘“), (2nd β€˜π‘“)⟩)))
200167, 179oveq12d 7423 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (π‘₯(2nd β€˜πΈ)𝑧) = (⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩))
201167, 173opeq12d 4880 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ⟨π‘₯, π‘¦βŸ© = ⟨⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩, ⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩⟩)
202201, 179oveq12d 7423 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (⟨π‘₯, π‘¦βŸ©(compβ€˜(𝑄 Γ—c 𝐢))𝑧) = (⟨⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩, ⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩⟩(compβ€˜(𝑄 Γ—c 𝐢))⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩))
203202, 195, 187oveq123d 7426 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝑄 Γ—c 𝐢))𝑧)𝑓) = (⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩(⟨⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩, ⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩⟩(compβ€˜(𝑄 Γ—c 𝐢))⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩))
204200, 203fveq12d 6895 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((π‘₯(2nd β€˜πΈ)𝑧)β€˜(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝑄 Γ—c 𝐢))𝑧)𝑓)) = ((⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)β€˜(⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩(⟨⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩, ⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩⟩(compβ€˜(𝑄 Γ—c 𝐢))⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩)))
205167fveq2d 6892 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((1st β€˜πΈ)β€˜π‘₯) = ((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩))
206173fveq2d 6892 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((1st β€˜πΈ)β€˜π‘¦) = ((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩))
207205, 206opeq12d 4880 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ⟨((1st β€˜πΈ)β€˜π‘₯), ((1st β€˜πΈ)β€˜π‘¦)⟩ = ⟨((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩), ((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)⟩)
208179fveq2d 6892 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((1st β€˜πΈ)β€˜π‘§) = ((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘§), (2nd β€˜π‘§)⟩))
209207, 208oveq12d 7423 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (⟨((1st β€˜πΈ)β€˜π‘₯), ((1st β€˜πΈ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΈ)β€˜π‘§)) = (⟨((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩), ((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)⟩(compβ€˜π·)((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)))
210173, 179oveq12d 7423 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (𝑦(2nd β€˜πΈ)𝑧) = (⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩))
211210, 195fveq12d 6895 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((𝑦(2nd β€˜πΈ)𝑧)β€˜π‘”) = ((⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)β€˜βŸ¨(1st β€˜π‘”), (2nd β€˜π‘”)⟩))
212167, 173oveq12d 7423 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (π‘₯(2nd β€˜πΈ)𝑦) = (⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩))
213212, 187fveq12d 6895 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((π‘₯(2nd β€˜πΈ)𝑦)β€˜π‘“) = ((⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)β€˜βŸ¨(1st β€˜π‘“), (2nd β€˜π‘“)⟩))
214209, 211, 213oveq123d 7426 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ (((𝑦(2nd β€˜πΈ)𝑧)β€˜π‘”)(⟨((1st β€˜πΈ)β€˜π‘₯), ((1st β€˜πΈ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΈ)β€˜π‘§))((π‘₯(2nd β€˜πΈ)𝑦)β€˜π‘“)) = (((⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)β€˜βŸ¨(1st β€˜π‘”), (2nd β€˜π‘”)⟩)(⟨((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩), ((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)⟩(compβ€˜π·)((1st β€˜πΈ)β€˜βŸ¨(1st β€˜π‘§), (2nd β€˜π‘§)⟩))((⟨(1st β€˜π‘₯), (2nd β€˜π‘₯)⟩(2nd β€˜πΈ)⟨(1st β€˜π‘¦), (2nd β€˜π‘¦)⟩)β€˜βŸ¨(1st β€˜π‘“), (2nd β€˜π‘“)⟩)))
215199, 204, 2143eqtr4d 2782 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑦 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ)) ∧ 𝑧 ∈ ((𝐢 Func 𝐷) Γ— (Baseβ€˜πΆ))) ∧ (𝑓 ∈ (π‘₯(Hom β€˜(𝑄 Γ—c 𝐢))𝑦) ∧ 𝑔 ∈ (𝑦(Hom β€˜(𝑄 Γ—c 𝐢))𝑧))) β†’ ((π‘₯(2nd β€˜πΈ)𝑧)β€˜(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(𝑄 Γ—c 𝐢))𝑧)𝑓)) = (((𝑦(2nd β€˜πΈ)𝑧)β€˜π‘”)(⟨((1st β€˜πΈ)β€˜π‘₯), ((1st β€˜πΈ)β€˜π‘¦)⟩(compβ€˜π·)((1st β€˜πΈ)β€˜π‘§))((π‘₯(2nd β€˜πΈ)𝑦)β€˜π‘“)))
21621, 22, 23, 24, 25, 26, 27, 6, 29, 3, 44, 55, 121, 162, 215isfuncd 17811 . . 3 (πœ‘ β†’ (1st β€˜πΈ)((𝑄 Γ—c 𝐢) Func 𝐷)(2nd β€˜πΈ))
217 df-br 5148 . . 3 ((1st β€˜πΈ)((𝑄 Γ—c 𝐢) Func 𝐷)(2nd β€˜πΈ) ↔ ⟨(1st β€˜πΈ), (2nd β€˜πΈ)⟩ ∈ ((𝑄 Γ—c 𝐢) Func 𝐷))
218216, 217sylib 217 . 2 (πœ‘ β†’ ⟨(1st β€˜πΈ), (2nd β€˜πΈ)⟩ ∈ ((𝑄 Γ—c 𝐢) Func 𝐷))
21917, 218eqeltrd 2833 1 (πœ‘ β†’ 𝐸 ∈ ((𝑄 Γ—c 𝐢) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  β¦‹csb 3892  βŸ¨cop 4633   class class class wbr 5147   Γ— cxp 5673   ∘ ccom 5679  Rel wrel 5680   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1st c1st 7969  2nd c2nd 7970  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604  Idccid 17605   Func cfunc 17800   Nat cnat 17888   FuncCat cfuc 17889   Γ—c cxpc 18116   evalF cevlf 18158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-func 17804  df-nat 17890  df-fuc 17891  df-xpc 18120  df-evlf 18162
This theorem is referenced by:  uncfcl  18184  uncf1  18185  uncf2  18186  yonedalem1  18221
  Copyright terms: Public domain W3C validator