MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff4 Structured version   Visualization version   GIF version

Theorem dff4 7121
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff4 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff4
StepHypRef Expression
1 dff3 7120 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
2 df-br 5149 . . . . . . . 8 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
3 ssel 3989 . . . . . . . . 9 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
4 opelxp2 5732 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦𝐵)
53, 4syl6 35 . . . . . . . 8 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
62, 5biimtrid 242 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦𝑦𝐵))
76pm4.71rd 562 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 ↔ (𝑦𝐵𝑥𝐹𝑦)))
87eubidv 2584 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦𝐵𝑥𝐹𝑦)))
9 df-reu 3379 . . . . 5 (∃!𝑦𝐵 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦𝐵𝑥𝐹𝑦))
108, 9bitr4di 289 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦𝐵 𝑥𝐹𝑦))
1110ralbidv 3176 . . 3 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
1211pm5.32i 574 . 2 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
131, 12bitri 275 1 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106  ∃!weu 2566  wral 3059  ∃!wreu 3376  wss 3963  cop 4637   class class class wbr 5148   × cxp 5687  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571
This theorem is referenced by:  exfo  7125
  Copyright terms: Public domain W3C validator