MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff4 Structured version   Visualization version   GIF version

Theorem dff4 7135
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff4 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff4
StepHypRef Expression
1 dff3 7134 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
2 df-br 5167 . . . . . . . 8 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
3 ssel 4002 . . . . . . . . 9 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
4 opelxp2 5743 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦𝐵)
53, 4syl6 35 . . . . . . . 8 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
62, 5biimtrid 242 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦𝑦𝐵))
76pm4.71rd 562 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 ↔ (𝑦𝐵𝑥𝐹𝑦)))
87eubidv 2589 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦𝐵𝑥𝐹𝑦)))
9 df-reu 3389 . . . . 5 (∃!𝑦𝐵 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦𝐵𝑥𝐹𝑦))
108, 9bitr4di 289 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦𝐵 𝑥𝐹𝑦))
1110ralbidv 3184 . . 3 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
1211pm5.32i 574 . 2 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
131, 12bitri 275 1 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  ∃!weu 2571  wral 3067  ∃!wreu 3386  wss 3976  cop 4654   class class class wbr 5166   × cxp 5698  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  exfo  7139
  Copyright terms: Public domain W3C validator