Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dff4 | Structured version Visualization version GIF version |
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.) |
Ref | Expression |
---|---|
dff4 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff3 6958 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) | |
2 | df-br 5071 | . . . . . . . 8 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
3 | ssel 3910 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
4 | opelxp2 5622 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑦 ∈ 𝐵) | |
5 | 3, 4 | syl6 35 | . . . . . . . 8 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
6 | 2, 5 | syl5bi 241 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 562 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
8 | 7 | eubidv 2586 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
9 | df-reu 3070 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) | |
10 | 8, 9 | bitr4di 288 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
11 | 10 | ralbidv 3120 | . . 3 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
12 | 11 | pm5.32i 574 | . 2 ⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
13 | 1, 12 | bitri 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃!weu 2568 ∀wral 3063 ∃!wreu 3065 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 × cxp 5578 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: exfo 6963 |
Copyright terms: Public domain | W3C validator |