| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.) |
| Ref | Expression |
|---|---|
| dff4 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff3 7072 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) | |
| 2 | df-br 5108 | . . . . . . . 8 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
| 3 | ssel 3940 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
| 4 | opelxp2 5681 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑦 ∈ 𝐵) | |
| 5 | 3, 4 | syl6 35 | . . . . . . . 8 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
| 6 | 2, 5 | biimtrid 242 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → 𝑦 ∈ 𝐵)) |
| 7 | 6 | pm4.71rd 562 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 8 | 7 | eubidv 2579 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
| 9 | df-reu 3355 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) | |
| 10 | 8, 9 | bitr4di 289 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
| 11 | 10 | ralbidv 3156 | . . 3 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
| 12 | 11 | pm5.32i 574 | . 2 ⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
| 13 | 1, 12 | bitri 275 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃!weu 2561 ∀wral 3044 ∃!wreu 3352 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 × cxp 5636 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: exfo 7077 |
| Copyright terms: Public domain | W3C validator |