MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicrcl Structured version   Visualization version   GIF version

Theorem cicrcl 17515
Description: Isomorphism implies the right side is an object. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicrcl ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))

Proof of Theorem cicrcl
StepHypRef Expression
1 cicfval 17509 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
21breqd 5085 . . 3 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆𝑅((Iso‘𝐶) supp ∅)𝑆))
3 isofn 17487 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
4 fvexd 6789 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) ∈ V)
5 0ex 5231 . . . . . 6 ∅ ∈ V
65a1i 11 . . . . 5 (𝐶 ∈ Cat → ∅ ∈ V)
7 df-br 5075 . . . . . 6 (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ ⟨𝑅, 𝑆⟩ ∈ ((Iso‘𝐶) supp ∅))
8 elsuppfng 7986 . . . . . 6 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (⟨𝑅, 𝑆⟩ ∈ ((Iso‘𝐶) supp ∅) ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
97, 8bitrid 282 . . . . 5 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
103, 4, 6, 9syl3anc 1370 . . . 4 (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
11 opelxp2 5631 . . . . 5 (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶))
1211adantr 481 . . . 4 ((⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅) → 𝑆 ∈ (Base‘𝐶))
1310, 12syl6bi 252 . . 3 (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆𝑆 ∈ (Base‘𝐶)))
142, 13sylbid 239 . 2 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆𝑆 ∈ (Base‘𝐶)))
1514imp 407 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  wne 2943  Vcvv 3432  c0 4256  cop 4567   class class class wbr 5074   × cxp 5587   Fn wfn 6428  cfv 6433  (class class class)co 7275   supp csupp 7977  Basecbs 16912  Catccat 17373  Isociso 17458  𝑐 ccic 17507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-supp 7978  df-inv 17460  df-iso 17461  df-cic 17508
This theorem is referenced by:  cicsym  17516  cictr  17517  initoeu2  17731
  Copyright terms: Public domain W3C validator