![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cicrcl | Structured version Visualization version GIF version |
Description: Isomorphism implies the right side is an object. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
cicrcl | β’ ((πΆ β Cat β§ π ( βπ βπΆ)π) β π β (BaseβπΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicfval 17744 | . . . 4 β’ (πΆ β Cat β ( βπ βπΆ) = ((IsoβπΆ) supp β )) | |
2 | 1 | breqd 5160 | . . 3 β’ (πΆ β Cat β (π ( βπ βπΆ)π β π ((IsoβπΆ) supp β )π)) |
3 | isofn 17722 | . . . . 5 β’ (πΆ β Cat β (IsoβπΆ) Fn ((BaseβπΆ) Γ (BaseβπΆ))) | |
4 | fvexd 6907 | . . . . 5 β’ (πΆ β Cat β (IsoβπΆ) β V) | |
5 | 0ex 5308 | . . . . . 6 β’ β β V | |
6 | 5 | a1i 11 | . . . . 5 β’ (πΆ β Cat β β β V) |
7 | df-br 5150 | . . . . . 6 β’ (π ((IsoβπΆ) supp β )π β β¨π , πβ© β ((IsoβπΆ) supp β )) | |
8 | elsuppfng 8155 | . . . . . 6 β’ (((IsoβπΆ) Fn ((BaseβπΆ) Γ (BaseβπΆ)) β§ (IsoβπΆ) β V β§ β β V) β (β¨π , πβ© β ((IsoβπΆ) supp β ) β (β¨π , πβ© β ((BaseβπΆ) Γ (BaseβπΆ)) β§ ((IsoβπΆ)ββ¨π , πβ©) β β ))) | |
9 | 7, 8 | bitrid 283 | . . . . 5 β’ (((IsoβπΆ) Fn ((BaseβπΆ) Γ (BaseβπΆ)) β§ (IsoβπΆ) β V β§ β β V) β (π ((IsoβπΆ) supp β )π β (β¨π , πβ© β ((BaseβπΆ) Γ (BaseβπΆ)) β§ ((IsoβπΆ)ββ¨π , πβ©) β β ))) |
10 | 3, 4, 6, 9 | syl3anc 1372 | . . . 4 β’ (πΆ β Cat β (π ((IsoβπΆ) supp β )π β (β¨π , πβ© β ((BaseβπΆ) Γ (BaseβπΆ)) β§ ((IsoβπΆ)ββ¨π , πβ©) β β ))) |
11 | opelxp2 5720 | . . . . 5 β’ (β¨π , πβ© β ((BaseβπΆ) Γ (BaseβπΆ)) β π β (BaseβπΆ)) | |
12 | 11 | adantr 482 | . . . 4 β’ ((β¨π , πβ© β ((BaseβπΆ) Γ (BaseβπΆ)) β§ ((IsoβπΆ)ββ¨π , πβ©) β β ) β π β (BaseβπΆ)) |
13 | 10, 12 | syl6bi 253 | . . 3 β’ (πΆ β Cat β (π ((IsoβπΆ) supp β )π β π β (BaseβπΆ))) |
14 | 2, 13 | sylbid 239 | . 2 β’ (πΆ β Cat β (π ( βπ βπΆ)π β π β (BaseβπΆ))) |
15 | 14 | imp 408 | 1 β’ ((πΆ β Cat β§ π ( βπ βπΆ)π) β π β (BaseβπΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 β wcel 2107 β wne 2941 Vcvv 3475 β c0 4323 β¨cop 4635 class class class wbr 5149 Γ cxp 5675 Fn wfn 6539 βcfv 6544 (class class class)co 7409 supp csupp 8146 Basecbs 17144 Catccat 17608 Isociso 17693 βπ ccic 17742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-supp 8147 df-inv 17695 df-iso 17696 df-cic 17743 |
This theorem is referenced by: cicsym 17751 cictr 17752 initoeu2 17966 |
Copyright terms: Public domain | W3C validator |