Step | Hyp | Ref
| Expression |
1 | | txcmp.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Comp) |
2 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋) |
3 | | txcmp.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑌) |
4 | | opelxpi 5617 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 〈𝑥, 𝐴〉 ∈ (𝑋 × 𝑌)) |
5 | 2, 3, 4 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝑥, 𝐴〉 ∈ (𝑋 × 𝑌)) |
6 | | txcmp.u |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝑊) |
7 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑋 × 𝑌) = ∪ 𝑊) |
8 | 5, 7 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 〈𝑥, 𝐴〉 ∈ ∪
𝑊) |
9 | | eluni2 4840 |
. . . . . . 7
⊢
(〈𝑥, 𝐴〉 ∈ ∪ 𝑊
↔ ∃𝑘 ∈
𝑊 〈𝑥, 𝐴〉 ∈ 𝑘) |
10 | 8, 9 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ 𝑊 〈𝑥, 𝐴〉 ∈ 𝑘) |
11 | | txcmp.w |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ⊆ (𝑅 ×t 𝑆)) |
12 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑊 ⊆ (𝑅 ×t 𝑆)) |
13 | 12 | sselda 3917 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ (𝑅 ×t 𝑆)) |
14 | | txcmp.s |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ Comp) |
15 | | eltx 22627 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑘 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦 ∈ 𝑘 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))) |
16 | 1, 14, 15 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦 ∈ 𝑘 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))) |
17 | 16 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦 ∈ 𝑘 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))) |
18 | 17 | biimpa 476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (𝑅 ×t 𝑆)) → ∀𝑦 ∈ 𝑘 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) |
19 | 13, 18 | syldan 590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) → ∀𝑦 ∈ 𝑘 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) |
20 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑦 = 〈𝑥, 𝐴〉 → (𝑦 ∈ (𝑟 × 𝑠) ↔ 〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠))) |
21 | 20 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (𝑦 = 〈𝑥, 𝐴〉 → ((𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) ↔ (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))) |
22 | 21 | 2rexbidv 3228 |
. . . . . . . . . 10
⊢ (𝑦 = 〈𝑥, 𝐴〉 → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))) |
23 | 22 | rspccv 3549 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑘 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) → (〈𝑥, 𝐴〉 ∈ 𝑘 → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))) |
24 | 19, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) → (〈𝑥, 𝐴〉 ∈ 𝑘 → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))) |
25 | | opelxp1 5621 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) → 𝑥 ∈ 𝑟) |
26 | 25 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) ∧ (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → 𝑥 ∈ 𝑟) |
27 | | opelxp2 5622 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) → 𝐴 ∈ 𝑠) |
28 | 27 | ad2antrl 724 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) ∧ (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → 𝐴 ∈ 𝑠) |
29 | 28 | snssd 4739 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) ∧ (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → {𝐴} ⊆ 𝑠) |
30 | | xpss2 5600 |
. . . . . . . . . . . . . 14
⊢ ({𝐴} ⊆ 𝑠 → (𝑟 × {𝐴}) ⊆ (𝑟 × 𝑠)) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) ∧ (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → (𝑟 × {𝐴}) ⊆ (𝑟 × 𝑠)) |
32 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) ∧ (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → (𝑟 × 𝑠) ⊆ 𝑘) |
33 | 31, 32 | sstrd 3927 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) ∧ (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → (𝑟 × {𝐴}) ⊆ 𝑘) |
34 | 26, 33 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) ∧ (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘)) |
35 | 34 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) → ((〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) → (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘))) |
36 | 35 | rexlimdvw 3218 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) → (∃𝑠 ∈ 𝑆 (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) → (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘))) |
37 | 36 | reximdv 3201 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑥, 𝐴〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) → ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘))) |
38 | 24, 37 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝑊) → (〈𝑥, 𝐴〉 ∈ 𝑘 → ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘))) |
39 | 38 | reximdva 3202 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∃𝑘 ∈ 𝑊 〈𝑥, 𝐴〉 ∈ 𝑘 → ∃𝑘 ∈ 𝑊 ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘))) |
40 | 10, 39 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ 𝑊 ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘)) |
41 | | rexcom 3281 |
. . . . . 6
⊢
(∃𝑘 ∈
𝑊 ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘) ↔ ∃𝑟 ∈ 𝑅 ∃𝑘 ∈ 𝑊 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘)) |
42 | | r19.42v 3276 |
. . . . . . 7
⊢
(∃𝑘 ∈
𝑊 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘) ↔ (𝑥 ∈ 𝑟 ∧ ∃𝑘 ∈ 𝑊 (𝑟 × {𝐴}) ⊆ 𝑘)) |
43 | 42 | rexbii 3177 |
. . . . . 6
⊢
(∃𝑟 ∈
𝑅 ∃𝑘 ∈ 𝑊 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘) ↔ ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ ∃𝑘 ∈ 𝑊 (𝑟 × {𝐴}) ⊆ 𝑘)) |
44 | 41, 43 | bitri 274 |
. . . . 5
⊢
(∃𝑘 ∈
𝑊 ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘) ↔ ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ ∃𝑘 ∈ 𝑊 (𝑟 × {𝐴}) ⊆ 𝑘)) |
45 | 40, 44 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ ∃𝑘 ∈ 𝑊 (𝑟 × {𝐴}) ⊆ 𝑘)) |
46 | 45 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ ∃𝑘 ∈ 𝑊 (𝑟 × {𝐴}) ⊆ 𝑘)) |
47 | | txcmp.x |
. . . 4
⊢ 𝑋 = ∪
𝑅 |
48 | | sseq2 3943 |
. . . 4
⊢ (𝑘 = (𝑓‘𝑟) → ((𝑟 × {𝐴}) ⊆ 𝑘 ↔ (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟))) |
49 | 47, 48 | cmpcovf 22450 |
. . 3
⊢ ((𝑅 ∈ Comp ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ 𝑅 (𝑥 ∈ 𝑟 ∧ ∃𝑘 ∈ 𝑊 (𝑟 × {𝐴}) ⊆ 𝑘)) → ∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = ∪ 𝑡 ∧ ∃𝑓(𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) |
50 | 1, 46, 49 | syl2anc 583 |
. 2
⊢ (𝜑 → ∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = ∪ 𝑡 ∧ ∃𝑓(𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) |
51 | | txcmp.y |
. . . . . . . 8
⊢ 𝑌 = ∪
𝑆 |
52 | 1 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑅 ∈ Comp) |
53 | | cmptop 22454 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Comp → 𝑆 ∈ Top) |
54 | 14, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ Top) |
55 | 54 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑆 ∈ Top) |
56 | | cmptop 22454 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Comp → 𝑅 ∈ Top) |
57 | 52, 56 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑅 ∈ Top) |
58 | | txtop 22628 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
59 | 57, 55, 58 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → (𝑅 ×t 𝑆) ∈ Top) |
60 | | simprrl 777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑓:𝑡⟶𝑊) |
61 | 60 | frnd 6592 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ran 𝑓 ⊆ 𝑊) |
62 | 11 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑊 ⊆ (𝑅 ×t 𝑆)) |
63 | 61, 62 | sstrd 3927 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ran 𝑓 ⊆ (𝑅 ×t 𝑆)) |
64 | | uniopn 21954 |
. . . . . . . . 9
⊢ (((𝑅 ×t 𝑆) ∈ Top ∧ ran 𝑓 ⊆ (𝑅 ×t 𝑆)) → ∪ ran
𝑓 ∈ (𝑅 ×t 𝑆)) |
65 | 59, 63, 64 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ∪ ran
𝑓 ∈ (𝑅 ×t 𝑆)) |
66 | | simprrr 778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)) |
67 | | ss2iun 4939 |
. . . . . . . . . 10
⊢
(∀𝑟 ∈
𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟) → ∪
𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ ∪ 𝑟 ∈ 𝑡 (𝑓‘𝑟)) |
68 | 66, 67 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ∪ 𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ ∪ 𝑟 ∈ 𝑡 (𝑓‘𝑟)) |
69 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑋 = ∪ 𝑡) |
70 | | uniiun 4984 |
. . . . . . . . . . . 12
⊢ ∪ 𝑡 =
∪ 𝑟 ∈ 𝑡 𝑟 |
71 | 69, 70 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑋 = ∪ 𝑟 ∈ 𝑡 𝑟) |
72 | 71 | xpeq1d 5609 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → (𝑋 × {𝐴}) = (∪
𝑟 ∈ 𝑡 𝑟 × {𝐴})) |
73 | | xpiundir 5649 |
. . . . . . . . . 10
⊢ (∪ 𝑟 ∈ 𝑡 𝑟 × {𝐴}) = ∪
𝑟 ∈ 𝑡 (𝑟 × {𝐴}) |
74 | 72, 73 | eqtr2di 2796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ∪ 𝑟 ∈ 𝑡 (𝑟 × {𝐴}) = (𝑋 × {𝐴})) |
75 | 60 | ffnd 6585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑓 Fn 𝑡) |
76 | | fniunfv 7102 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑡 → ∪
𝑟 ∈ 𝑡 (𝑓‘𝑟) = ∪ ran 𝑓) |
77 | 75, 76 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ∪ 𝑟 ∈ 𝑡 (𝑓‘𝑟) = ∪ ran 𝑓) |
78 | 68, 74, 77 | 3sstr3d 3963 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → (𝑋 × {𝐴}) ⊆ ∪ ran
𝑓) |
79 | 3 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝐴 ∈ 𝑌) |
80 | 47, 51, 52, 55, 65, 78, 79 | txtube 22699 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ ∪ ran
𝑓)) |
81 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
82 | 81 | rnex 7733 |
. . . . . . . . . . . . 13
⊢ ran 𝑓 ∈ V |
83 | 82 | elpw 4534 |
. . . . . . . . . . . 12
⊢ (ran
𝑓 ∈ 𝒫 𝑊 ↔ ran 𝑓 ⊆ 𝑊) |
84 | 61, 83 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ran 𝑓 ∈ 𝒫 𝑊) |
85 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) |
86 | 85 | elin2d 4129 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑡 ∈ Fin) |
87 | | dffn4 6678 |
. . . . . . . . . . . . 13
⊢ (𝑓 Fn 𝑡 ↔ 𝑓:𝑡–onto→ran 𝑓) |
88 | 75, 87 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → 𝑓:𝑡–onto→ran 𝑓) |
89 | | fofi 9035 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ Fin ∧ 𝑓:𝑡–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
90 | 86, 88, 89 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ran 𝑓 ∈ Fin) |
91 | 84, 90 | elind 4124 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ran 𝑓 ∈ (𝒫 𝑊 ∩ Fin)) |
92 | | unieq 4847 |
. . . . . . . . . . . . 13
⊢ (𝑣 = ran 𝑓 → ∪ 𝑣 = ∪
ran 𝑓) |
93 | 92 | sseq2d 3949 |
. . . . . . . . . . . 12
⊢ (𝑣 = ran 𝑓 → ((𝑋 × 𝑢) ⊆ ∪ 𝑣 ↔ (𝑋 × 𝑢) ⊆ ∪ ran
𝑓)) |
94 | 93 | rspcev 3552 |
. . . . . . . . . . 11
⊢ ((ran
𝑓 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑋 × 𝑢) ⊆ ∪ ran
𝑓) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣) |
95 | 94 | ex 412 |
. . . . . . . . . 10
⊢ (ran
𝑓 ∈ (𝒫 𝑊 ∩ Fin) → ((𝑋 × 𝑢) ⊆ ∪ ran
𝑓 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) |
96 | 91, 95 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ((𝑋 × 𝑢) ⊆ ∪ ran
𝑓 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) |
97 | 96 | anim2d 611 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ((𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ ∪ ran
𝑓) → (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣))) |
98 | 97 | reximdv 3201 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → (∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ (𝑋 × 𝑢) ⊆ ∪ ran
𝑓) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣))) |
99 | 80, 98 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = ∪ 𝑡 ∧ (𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)))) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) |
100 | 99 | expr 456 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ 𝑋 = ∪ 𝑡) → ((𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣))) |
101 | 100 | exlimdv 1937 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ 𝑋 = ∪ 𝑡) → (∃𝑓(𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟)) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣))) |
102 | 101 | expimpd 453 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝒫 𝑅 ∩ Fin)) → ((𝑋 = ∪ 𝑡 ∧ ∃𝑓(𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟))) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣))) |
103 | 102 | rexlimdva 3212 |
. 2
⊢ (𝜑 → (∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = ∪ 𝑡 ∧ ∃𝑓(𝑓:𝑡⟶𝑊 ∧ ∀𝑟 ∈ 𝑡 (𝑟 × {𝐴}) ⊆ (𝑓‘𝑟))) → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣))) |
104 | 50, 103 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝑆 (𝐴 ∈ 𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ ∪ 𝑣)) |