MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmplem1 Structured version   Visualization version   GIF version

Theorem txcmplem1 23556
Description: Lemma for txcmp 23558. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmp.x 𝑋 = 𝑅
txcmp.y 𝑌 = 𝑆
txcmp.r (𝜑𝑅 ∈ Comp)
txcmp.s (𝜑𝑆 ∈ Comp)
txcmp.w (𝜑𝑊 ⊆ (𝑅 ×t 𝑆))
txcmp.u (𝜑 → (𝑋 × 𝑌) = 𝑊)
txcmp.a (𝜑𝐴𝑌)
Assertion
Ref Expression
txcmplem1 (𝜑 → ∃𝑢𝑆 (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
Distinct variable groups:   𝑢,𝐴   𝑣,𝑢,𝑆   𝑢,𝑌,𝑣   𝑢,𝑊,𝑣   𝑢,𝑋,𝑣   𝜑,𝑢   𝑢,𝑅
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑣)   𝑅(𝑣)

Proof of Theorem txcmplem1
Dummy variables 𝑓 𝑘 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcmp.r . . 3 (𝜑𝑅 ∈ Comp)
2 id 22 . . . . . . . . 9 (𝑥𝑋𝑥𝑋)
3 txcmp.a . . . . . . . . 9 (𝜑𝐴𝑌)
4 opelxpi 5651 . . . . . . . . 9 ((𝑥𝑋𝐴𝑌) → ⟨𝑥, 𝐴⟩ ∈ (𝑋 × 𝑌))
52, 3, 4syl2anr 597 . . . . . . . 8 ((𝜑𝑥𝑋) → ⟨𝑥, 𝐴⟩ ∈ (𝑋 × 𝑌))
6 txcmp.u . . . . . . . . 9 (𝜑 → (𝑋 × 𝑌) = 𝑊)
76adantr 480 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑋 × 𝑌) = 𝑊)
85, 7eleqtrd 2833 . . . . . . 7 ((𝜑𝑥𝑋) → ⟨𝑥, 𝐴⟩ ∈ 𝑊)
9 eluni2 4860 . . . . . . 7 (⟨𝑥, 𝐴⟩ ∈ 𝑊 ↔ ∃𝑘𝑊𝑥, 𝐴⟩ ∈ 𝑘)
108, 9sylib 218 . . . . . 6 ((𝜑𝑥𝑋) → ∃𝑘𝑊𝑥, 𝐴⟩ ∈ 𝑘)
11 txcmp.w . . . . . . . . . . . 12 (𝜑𝑊 ⊆ (𝑅 ×t 𝑆))
1211adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑊 ⊆ (𝑅 ×t 𝑆))
1312sselda 3929 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑘𝑊) → 𝑘 ∈ (𝑅 ×t 𝑆))
14 txcmp.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Comp)
15 eltx 23483 . . . . . . . . . . . . 13 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑘 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑘𝑟𝑅𝑠𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)))
161, 14, 15syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑘𝑟𝑅𝑠𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)))
1716adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑘 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑘𝑟𝑅𝑠𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)))
1817biimpa 476 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑘 ∈ (𝑅 ×t 𝑆)) → ∀𝑦𝑘𝑟𝑅𝑠𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))
1913, 18syldan 591 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑘𝑊) → ∀𝑦𝑘𝑟𝑅𝑠𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘))
20 eleq1 2819 . . . . . . . . . . . 12 (𝑦 = ⟨𝑥, 𝐴⟩ → (𝑦 ∈ (𝑟 × 𝑠) ↔ ⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠)))
2120anbi1d 631 . . . . . . . . . . 11 (𝑦 = ⟨𝑥, 𝐴⟩ → ((𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) ↔ (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)))
22212rexbidv 3197 . . . . . . . . . 10 (𝑦 = ⟨𝑥, 𝐴⟩ → (∃𝑟𝑅𝑠𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) ↔ ∃𝑟𝑅𝑠𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)))
2322rspccv 3569 . . . . . . . . 9 (∀𝑦𝑘𝑟𝑅𝑠𝑆 (𝑦 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) → (⟨𝑥, 𝐴⟩ ∈ 𝑘 → ∃𝑟𝑅𝑠𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)))
2419, 23syl 17 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑘𝑊) → (⟨𝑥, 𝐴⟩ ∈ 𝑘 → ∃𝑟𝑅𝑠𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)))
25 opelxp1 5656 . . . . . . . . . . . . 13 (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) → 𝑥𝑟)
2625ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑘𝑊) ∧ (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → 𝑥𝑟)
27 opelxp2 5657 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) → 𝐴𝑠)
2827ad2antrl 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ 𝑘𝑊) ∧ (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → 𝐴𝑠)
2928snssd 4758 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑘𝑊) ∧ (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → {𝐴} ⊆ 𝑠)
30 xpss2 5634 . . . . . . . . . . . . . 14 ({𝐴} ⊆ 𝑠 → (𝑟 × {𝐴}) ⊆ (𝑟 × 𝑠))
3129, 30syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑘𝑊) ∧ (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → (𝑟 × {𝐴}) ⊆ (𝑟 × 𝑠))
32 simprr 772 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑘𝑊) ∧ (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → (𝑟 × 𝑠) ⊆ 𝑘)
3331, 32sstrd 3940 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑘𝑊) ∧ (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → (𝑟 × {𝐴}) ⊆ 𝑘)
3426, 33jca 511 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑘𝑊) ∧ (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘)) → (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘))
3534ex 412 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ 𝑘𝑊) → ((⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) → (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘)))
3635rexlimdvw 3138 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑘𝑊) → (∃𝑠𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) → (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘)))
3736reximdv 3147 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑘𝑊) → (∃𝑟𝑅𝑠𝑆 (⟨𝑥, 𝐴⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑘) → ∃𝑟𝑅 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘)))
3824, 37syld 47 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑘𝑊) → (⟨𝑥, 𝐴⟩ ∈ 𝑘 → ∃𝑟𝑅 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘)))
3938reximdva 3145 . . . . . 6 ((𝜑𝑥𝑋) → (∃𝑘𝑊𝑥, 𝐴⟩ ∈ 𝑘 → ∃𝑘𝑊𝑟𝑅 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘)))
4010, 39mpd 15 . . . . 5 ((𝜑𝑥𝑋) → ∃𝑘𝑊𝑟𝑅 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘))
41 rexcom 3261 . . . . . 6 (∃𝑘𝑊𝑟𝑅 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘) ↔ ∃𝑟𝑅𝑘𝑊 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘))
42 r19.42v 3164 . . . . . . 7 (∃𝑘𝑊 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘) ↔ (𝑥𝑟 ∧ ∃𝑘𝑊 (𝑟 × {𝐴}) ⊆ 𝑘))
4342rexbii 3079 . . . . . 6 (∃𝑟𝑅𝑘𝑊 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘) ↔ ∃𝑟𝑅 (𝑥𝑟 ∧ ∃𝑘𝑊 (𝑟 × {𝐴}) ⊆ 𝑘))
4441, 43bitri 275 . . . . 5 (∃𝑘𝑊𝑟𝑅 (𝑥𝑟 ∧ (𝑟 × {𝐴}) ⊆ 𝑘) ↔ ∃𝑟𝑅 (𝑥𝑟 ∧ ∃𝑘𝑊 (𝑟 × {𝐴}) ⊆ 𝑘))
4540, 44sylib 218 . . . 4 ((𝜑𝑥𝑋) → ∃𝑟𝑅 (𝑥𝑟 ∧ ∃𝑘𝑊 (𝑟 × {𝐴}) ⊆ 𝑘))
4645ralrimiva 3124 . . 3 (𝜑 → ∀𝑥𝑋𝑟𝑅 (𝑥𝑟 ∧ ∃𝑘𝑊 (𝑟 × {𝐴}) ⊆ 𝑘))
47 txcmp.x . . . 4 𝑋 = 𝑅
48 sseq2 3956 . . . 4 (𝑘 = (𝑓𝑟) → ((𝑟 × {𝐴}) ⊆ 𝑘 ↔ (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))
4947, 48cmpcovf 23306 . . 3 ((𝑅 ∈ Comp ∧ ∀𝑥𝑋𝑟𝑅 (𝑥𝑟 ∧ ∃𝑘𝑊 (𝑟 × {𝐴}) ⊆ 𝑘)) → ∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = 𝑡 ∧ ∃𝑓(𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟))))
501, 46, 49syl2anc 584 . 2 (𝜑 → ∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = 𝑡 ∧ ∃𝑓(𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟))))
51 txcmp.y . . . . . . . 8 𝑌 = 𝑆
521ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑅 ∈ Comp)
53 cmptop 23310 . . . . . . . . . 10 (𝑆 ∈ Comp → 𝑆 ∈ Top)
5414, 53syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Top)
5554ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑆 ∈ Top)
56 cmptop 23310 . . . . . . . . . . 11 (𝑅 ∈ Comp → 𝑅 ∈ Top)
5752, 56syl 17 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑅 ∈ Top)
58 txtop 23484 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
5957, 55, 58syl2anc 584 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → (𝑅 ×t 𝑆) ∈ Top)
60 simprrl 780 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑓:𝑡𝑊)
6160frnd 6659 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ran 𝑓𝑊)
6211ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑊 ⊆ (𝑅 ×t 𝑆))
6361, 62sstrd 3940 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ran 𝑓 ⊆ (𝑅 ×t 𝑆))
64 uniopn 22812 . . . . . . . . 9 (((𝑅 ×t 𝑆) ∈ Top ∧ ran 𝑓 ⊆ (𝑅 ×t 𝑆)) → ran 𝑓 ∈ (𝑅 ×t 𝑆))
6559, 63, 64syl2anc 584 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ran 𝑓 ∈ (𝑅 ×t 𝑆))
66 simprrr 781 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟))
67 ss2iun 4958 . . . . . . . . . 10 (∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟) → 𝑟𝑡 (𝑟 × {𝐴}) ⊆ 𝑟𝑡 (𝑓𝑟))
6866, 67syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑟𝑡 (𝑟 × {𝐴}) ⊆ 𝑟𝑡 (𝑓𝑟))
69 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑋 = 𝑡)
70 uniiun 5005 . . . . . . . . . . . 12 𝑡 = 𝑟𝑡 𝑟
7169, 70eqtrdi 2782 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑋 = 𝑟𝑡 𝑟)
7271xpeq1d 5643 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → (𝑋 × {𝐴}) = ( 𝑟𝑡 𝑟 × {𝐴}))
73 xpiundir 5686 . . . . . . . . . 10 ( 𝑟𝑡 𝑟 × {𝐴}) = 𝑟𝑡 (𝑟 × {𝐴})
7472, 73eqtr2di 2783 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑟𝑡 (𝑟 × {𝐴}) = (𝑋 × {𝐴}))
7560ffnd 6652 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑓 Fn 𝑡)
76 fniunfv 7181 . . . . . . . . . 10 (𝑓 Fn 𝑡 𝑟𝑡 (𝑓𝑟) = ran 𝑓)
7775, 76syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑟𝑡 (𝑓𝑟) = ran 𝑓)
7868, 74, 773sstr3d 3984 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → (𝑋 × {𝐴}) ⊆ ran 𝑓)
793ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝐴𝑌)
8047, 51, 52, 55, 65, 78, 79txtube 23555 . . . . . . 7 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ ran 𝑓))
81 vex 3440 . . . . . . . . . . . . . 14 𝑓 ∈ V
8281rnex 7840 . . . . . . . . . . . . 13 ran 𝑓 ∈ V
8382elpw 4551 . . . . . . . . . . . 12 (ran 𝑓 ∈ 𝒫 𝑊 ↔ ran 𝑓𝑊)
8461, 83sylibr 234 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ran 𝑓 ∈ 𝒫 𝑊)
85 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑡 ∈ (𝒫 𝑅 ∩ Fin))
8685elin2d 4152 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑡 ∈ Fin)
87 dffn4 6741 . . . . . . . . . . . . 13 (𝑓 Fn 𝑡𝑓:𝑡onto→ran 𝑓)
8875, 87sylib 218 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → 𝑓:𝑡onto→ran 𝑓)
89 fofi 9197 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ 𝑓:𝑡onto→ran 𝑓) → ran 𝑓 ∈ Fin)
9086, 88, 89syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ran 𝑓 ∈ Fin)
9184, 90elind 4147 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ran 𝑓 ∈ (𝒫 𝑊 ∩ Fin))
92 unieq 4867 . . . . . . . . . . . . 13 (𝑣 = ran 𝑓 𝑣 = ran 𝑓)
9392sseq2d 3962 . . . . . . . . . . . 12 (𝑣 = ran 𝑓 → ((𝑋 × 𝑢) ⊆ 𝑣 ↔ (𝑋 × 𝑢) ⊆ ran 𝑓))
9493rspcev 3572 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑋 × 𝑢) ⊆ ran 𝑓) → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)
9594ex 412 . . . . . . . . . 10 (ran 𝑓 ∈ (𝒫 𝑊 ∩ Fin) → ((𝑋 × 𝑢) ⊆ ran 𝑓 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
9691, 95syl 17 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ((𝑋 × 𝑢) ⊆ ran 𝑓 → ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
9796anim2d 612 . . . . . . . 8 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ((𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ ran 𝑓) → (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)))
9897reximdv 3147 . . . . . . 7 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → (∃𝑢𝑆 (𝐴𝑢 ∧ (𝑋 × 𝑢) ⊆ ran 𝑓) → ∃𝑢𝑆 (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)))
9980, 98mpd 15 . . . . . 6 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ (𝑋 = 𝑡 ∧ (𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)))) → ∃𝑢𝑆 (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
10099expr 456 . . . . 5 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ 𝑋 = 𝑡) → ((𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)) → ∃𝑢𝑆 (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)))
101100exlimdv 1934 . . . 4 (((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) ∧ 𝑋 = 𝑡) → (∃𝑓(𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟)) → ∃𝑢𝑆 (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)))
102101expimpd 453 . . 3 ((𝜑𝑡 ∈ (𝒫 𝑅 ∩ Fin)) → ((𝑋 = 𝑡 ∧ ∃𝑓(𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟))) → ∃𝑢𝑆 (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)))
103102rexlimdva 3133 . 2 (𝜑 → (∃𝑡 ∈ (𝒫 𝑅 ∩ Fin)(𝑋 = 𝑡 ∧ ∃𝑓(𝑓:𝑡𝑊 ∧ ∀𝑟𝑡 (𝑟 × {𝐴}) ⊆ (𝑓𝑟))) → ∃𝑢𝑆 (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣)))
10450, 103mpd 15 1 (𝜑 → ∃𝑢𝑆 (𝐴𝑢 ∧ ∃𝑣 ∈ (𝒫 𝑊 ∩ Fin)(𝑋 × 𝑢) ⊆ 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  𝒫 cpw 4547  {csn 4573  cop 4579   cuni 4856   ciun 4939   × cxp 5612  ran crn 5615   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  Fincfn 8869  Topctop 22808  Compccmp 23301   ×t ctx 23475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-en 8870  df-dom 8871  df-fin 8873  df-topgen 17347  df-top 22809  df-bases 22861  df-cmp 23302  df-tx 23477
This theorem is referenced by:  txcmplem2  23557
  Copyright terms: Public domain W3C validator