Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhprelat3N Structured version   Visualization version   GIF version

Theorem lhprelat3N 40034
Description: The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 39406. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhprelat3.b 𝐵 = (Base‘𝐾)
lhprelat3.l = (le‘𝐾)
lhprelat3.s < = (lt‘𝐾)
lhprelat3.m = (meet‘𝐾)
lhprelat3.c 𝐶 = ( ⋖ ‘𝐾)
lhprelat3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhprelat3N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Distinct variable groups:   𝑤,𝐶   𝑤,𝐻   𝑤,𝐾   𝑤,   𝑤,   𝑤,𝑋   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   < (𝑤)

Proof of Theorem lhprelat3N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
2 simpll1 1213 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3 lhprelat3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2729 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 39282 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 eqid 2729 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
8 lhprelat3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
93, 7, 4, 8lhpoc2N 40009 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐵) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
102, 6, 9syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
111, 10mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
1211adantr 480 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
13 hlop 39355 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
142, 13syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
152hllatd 39357 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
16 simpll3 1215 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
173, 7opoccl 39187 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝𝐵) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
1814, 6, 17syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
19 lhprelat3.m . . . . . . . . . 10 = (meet‘𝐾)
203, 19latmcl 18399 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ((oc‘𝐾)‘𝑝) ∈ 𝐵) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
2115, 16, 18, 20syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
22 lhprelat3.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
233, 7, 22cvrcon3b 39270 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵𝑌𝐵) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
2414, 21, 16, 23syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
25 hlol 39354 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
262, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OL)
27 eqid 2729 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
283, 27, 19, 7oldmm3N 39212 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑝𝐵) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
2926, 16, 6, 28syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
3029breq2d 5119 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝)))
3124, 30bitr2d 280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
32 simpll2 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
33 lhprelat3.l . . . . . . . . 9 = (le‘𝐾)
343, 33, 7oplecon3b 39193 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3514, 32, 21, 34syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3629breq1d 5117 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
3735, 36bitr2d 280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
3831, 37anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)) ↔ ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝)))))
3938biimpa 476 . . . 4 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4039ancomd 461 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
41 oveq2 7395 . . . . . 6 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑌 𝑤) = (𝑌 ((oc‘𝐾)‘𝑝)))
4241breq2d 5119 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑋 (𝑌 𝑤) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4341breq1d 5117 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑌 𝑤)𝐶𝑌 ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
4442, 43anbi12d 632 . . . 4 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌) ↔ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)))
4544rspcev 3588 . . 3 ((((oc‘𝐾)‘𝑝) ∈ 𝐻 ∧ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
4612, 40, 45syl2anc 584 . 2 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
47 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ HL)
4847, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ OP)
49 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
503, 7opoccl 39187 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
5148, 49, 50syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
52 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
533, 7opoccl 39187 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
5448, 52, 53syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
55 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
56 lhprelat3.s . . . . . 6 < = (lt‘𝐾)
573, 56, 7opltcon3b 39197 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5848, 52, 49, 57syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5955, 58mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋))
603, 33, 56, 27, 22, 4hlrelat3 39406 . . 3 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6147, 51, 54, 59, 60syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6246, 61r19.29a 3141 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  occoc 17228  ltcplt 18269  joincjn 18272  meetcmee 18273  Latclat 18390  OPcops 39165  OLcol 39167  ccvr 39255  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator