Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhprelat3N Structured version   Visualization version   GIF version

Theorem lhprelat3N 40042
Description: The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 39414. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhprelat3.b 𝐵 = (Base‘𝐾)
lhprelat3.l = (le‘𝐾)
lhprelat3.s < = (lt‘𝐾)
lhprelat3.m = (meet‘𝐾)
lhprelat3.c 𝐶 = ( ⋖ ‘𝐾)
lhprelat3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhprelat3N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Distinct variable groups:   𝑤,𝐶   𝑤,𝐻   𝑤,𝐾   𝑤,   𝑤,   𝑤,𝑋   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   < (𝑤)

Proof of Theorem lhprelat3N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
2 simpll1 1213 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3 lhprelat3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2737 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 39290 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 eqid 2737 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
8 lhprelat3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
93, 7, 4, 8lhpoc2N 40017 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐵) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
102, 6, 9syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
111, 10mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
1211adantr 480 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
13 hlop 39363 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
142, 13syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
152hllatd 39365 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
16 simpll3 1215 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
173, 7opoccl 39195 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝𝐵) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
1814, 6, 17syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
19 lhprelat3.m . . . . . . . . . 10 = (meet‘𝐾)
203, 19latmcl 18485 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ((oc‘𝐾)‘𝑝) ∈ 𝐵) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
2115, 16, 18, 20syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
22 lhprelat3.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
233, 7, 22cvrcon3b 39278 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵𝑌𝐵) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
2414, 21, 16, 23syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
25 hlol 39362 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
262, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OL)
27 eqid 2737 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
283, 27, 19, 7oldmm3N 39220 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑝𝐵) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
2926, 16, 6, 28syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
3029breq2d 5155 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝)))
3124, 30bitr2d 280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
32 simpll2 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
33 lhprelat3.l . . . . . . . . 9 = (le‘𝐾)
343, 33, 7oplecon3b 39201 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3514, 32, 21, 34syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3629breq1d 5153 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
3735, 36bitr2d 280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
3831, 37anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)) ↔ ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝)))))
3938biimpa 476 . . . 4 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4039ancomd 461 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
41 oveq2 7439 . . . . . 6 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑌 𝑤) = (𝑌 ((oc‘𝐾)‘𝑝)))
4241breq2d 5155 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑋 (𝑌 𝑤) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4341breq1d 5153 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑌 𝑤)𝐶𝑌 ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
4442, 43anbi12d 632 . . . 4 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌) ↔ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)))
4544rspcev 3622 . . 3 ((((oc‘𝐾)‘𝑝) ∈ 𝐻 ∧ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
4612, 40, 45syl2anc 584 . 2 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
47 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ HL)
4847, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ OP)
49 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
503, 7opoccl 39195 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
5148, 49, 50syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
52 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
533, 7opoccl 39195 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
5448, 52, 53syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
55 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
56 lhprelat3.s . . . . . 6 < = (lt‘𝐾)
573, 56, 7opltcon3b 39205 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5848, 52, 49, 57syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5955, 58mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋))
603, 33, 56, 27, 22, 4hlrelat3 39414 . . 3 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6147, 51, 54, 59, 60syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6246, 61r19.29a 3162 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  occoc 17305  ltcplt 18354  joincjn 18357  meetcmee 18358  Latclat 18476  OPcops 39173  OLcol 39175  ccvr 39263  Atomscatm 39264  HLchlt 39351  LHypclh 39986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-lhyp 39990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator