Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhprelat3N Structured version   Visualization version   GIF version

Theorem lhprelat3N 40059
Description: The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 39431. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhprelat3.b 𝐵 = (Base‘𝐾)
lhprelat3.l = (le‘𝐾)
lhprelat3.s < = (lt‘𝐾)
lhprelat3.m = (meet‘𝐾)
lhprelat3.c 𝐶 = ( ⋖ ‘𝐾)
lhprelat3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhprelat3N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Distinct variable groups:   𝑤,𝐶   𝑤,𝐻   𝑤,𝐾   𝑤,   𝑤,   𝑤,𝑋   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   < (𝑤)

Proof of Theorem lhprelat3N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
2 simpll1 1213 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3 lhprelat3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2735 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 39307 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 eqid 2735 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
8 lhprelat3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
93, 7, 4, 8lhpoc2N 40034 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐵) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
102, 6, 9syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
111, 10mpbid 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
1211adantr 480 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
13 hlop 39380 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
142, 13syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
152hllatd 39382 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
16 simpll3 1215 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
173, 7opoccl 39212 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝𝐵) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
1814, 6, 17syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
19 lhprelat3.m . . . . . . . . . 10 = (meet‘𝐾)
203, 19latmcl 18450 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ((oc‘𝐾)‘𝑝) ∈ 𝐵) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
2115, 16, 18, 20syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
22 lhprelat3.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
233, 7, 22cvrcon3b 39295 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵𝑌𝐵) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
2414, 21, 16, 23syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
25 hlol 39379 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
262, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OL)
27 eqid 2735 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
283, 27, 19, 7oldmm3N 39237 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑝𝐵) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
2926, 16, 6, 28syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
3029breq2d 5131 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝)))
3124, 30bitr2d 280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
32 simpll2 1214 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
33 lhprelat3.l . . . . . . . . 9 = (le‘𝐾)
343, 33, 7oplecon3b 39218 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3514, 32, 21, 34syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3629breq1d 5129 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
3735, 36bitr2d 280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
3831, 37anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)) ↔ ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝)))))
3938biimpa 476 . . . 4 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4039ancomd 461 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
41 oveq2 7413 . . . . . 6 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑌 𝑤) = (𝑌 ((oc‘𝐾)‘𝑝)))
4241breq2d 5131 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑋 (𝑌 𝑤) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4341breq1d 5129 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑌 𝑤)𝐶𝑌 ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
4442, 43anbi12d 632 . . . 4 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌) ↔ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)))
4544rspcev 3601 . . 3 ((((oc‘𝐾)‘𝑝) ∈ 𝐻 ∧ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
4612, 40, 45syl2anc 584 . 2 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
47 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ HL)
4847, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ OP)
49 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
503, 7opoccl 39212 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
5148, 49, 50syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
52 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
533, 7opoccl 39212 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
5448, 52, 53syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
55 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
56 lhprelat3.s . . . . . 6 < = (lt‘𝐾)
573, 56, 7opltcon3b 39222 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5848, 52, 49, 57syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5955, 58mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋))
603, 33, 56, 27, 22, 4hlrelat3 39431 . . 3 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6147, 51, 54, 59, 60syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6246, 61r19.29a 3148 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  occoc 17279  ltcplt 18320  joincjn 18323  meetcmee 18324  Latclat 18441  OPcops 39190  OLcol 39192  ccvr 39280  Atomscatm 39281  HLchlt 39368  LHypclh 40003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-lhyp 40007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator