Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhprelat3N Structured version   Visualization version   GIF version

Theorem lhprelat3N 37178
Description: The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 36550. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhprelat3.b 𝐵 = (Base‘𝐾)
lhprelat3.l = (le‘𝐾)
lhprelat3.s < = (lt‘𝐾)
lhprelat3.m = (meet‘𝐾)
lhprelat3.c 𝐶 = ( ⋖ ‘𝐾)
lhprelat3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhprelat3N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Distinct variable groups:   𝑤,𝐶   𝑤,𝐻   𝑤,𝐾   𝑤,   𝑤,   𝑤,𝑋   𝑤,𝑌
Allowed substitution hints:   𝐵(𝑤)   < (𝑤)

Proof of Theorem lhprelat3N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ (Atoms‘𝐾))
2 simpll1 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ HL)
3 lhprelat3.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 eqid 2823 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 36427 . . . . . . 7 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 eqid 2823 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
8 lhprelat3.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
93, 7, 4, 8lhpoc2N 37153 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐵) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
102, 6, 9syl2anc 586 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝 ∈ (Atoms‘𝐾) ↔ ((oc‘𝐾)‘𝑝) ∈ 𝐻))
111, 10mpbid 234 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
1211adantr 483 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((oc‘𝐾)‘𝑝) ∈ 𝐻)
13 hlop 36500 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
142, 13syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OP)
152hllatd 36502 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ Lat)
16 simpll3 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑌𝐵)
173, 7opoccl 36332 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑝𝐵) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
1814, 6, 17syl2anc 586 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘𝑝) ∈ 𝐵)
19 lhprelat3.m . . . . . . . . . 10 = (meet‘𝐾)
203, 19latmcl 17664 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ((oc‘𝐾)‘𝑝) ∈ 𝐵) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
2115, 16, 18, 20syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵)
22 lhprelat3.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
233, 7, 22cvrcon3b 36415 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵𝑌𝐵) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
2414, 21, 16, 23syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝)))))
25 hlol 36499 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
262, 25syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ OL)
27 eqid 2823 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
283, 27, 19, 7oldmm3N 36357 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑝𝐵) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
2926, 16, 6, 28syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) = (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝))
3029breq2d 5080 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝)))
3124, 30bitr2d 282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
32 simpll2 1209 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑋𝐵)
33 lhprelat3.l . . . . . . . . 9 = (le‘𝐾)
343, 33, 7oplecon3b 36338 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑌 ((oc‘𝐾)‘𝑝)) ∈ 𝐵) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3514, 32, 21, 34syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ↔ ((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋)))
3629breq1d 5078 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (((oc‘𝐾)‘(𝑌 ((oc‘𝐾)‘𝑝))) ((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
3735, 36bitr2d 282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
3831, 37anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) → ((((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)) ↔ ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝)))))
3938biimpa 479 . . . 4 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ((𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4039ancomd 464 . . 3 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
41 oveq2 7166 . . . . . 6 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑌 𝑤) = (𝑌 ((oc‘𝐾)‘𝑝)))
4241breq2d 5080 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → (𝑋 (𝑌 𝑤) ↔ 𝑋 (𝑌 ((oc‘𝐾)‘𝑝))))
4341breq1d 5078 . . . . 5 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑌 𝑤)𝐶𝑌 ↔ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌))
4442, 43anbi12d 632 . . . 4 (𝑤 = ((oc‘𝐾)‘𝑝) → ((𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌) ↔ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)))
4544rspcev 3625 . . 3 ((((oc‘𝐾)‘𝑝) ∈ 𝐻 ∧ (𝑋 (𝑌 ((oc‘𝐾)‘𝑝)) ∧ (𝑌 ((oc‘𝐾)‘𝑝))𝐶𝑌)) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
4612, 40, 45syl2anc 586 . 2 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) ∧ 𝑝 ∈ (Atoms‘𝐾)) ∧ (((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋))) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
47 simpl1 1187 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ HL)
4847, 13syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝐾 ∈ OP)
49 simpl3 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
503, 7opoccl 36332 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
5148, 49, 50syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
52 simpl2 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
533, 7opoccl 36332 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
5448, 52, 53syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
55 simpr 487 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
56 lhprelat3.s . . . . . 6 < = (lt‘𝐾)
573, 56, 7opltcon3b 36342 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5848, 52, 49, 57syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)))
5955, 58mpbid 234 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋))
603, 33, 56, 27, 22, 4hlrelat3 36550 . . 3 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑌) < ((oc‘𝐾)‘𝑋)) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6147, 51, 54, 59, 60syl31anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑝 ∈ (Atoms‘𝐾)(((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)𝑝) ((oc‘𝐾)‘𝑋)))
6246, 61r19.29a 3291 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  occoc 16575  ltcplt 17553  joincjn 17556  meetcmee 17557  Latclat 17657  OPcops 36310  OLcol 36312  ccvr 36400  Atomscatm 36401  HLchlt 36488  LHypclh 37122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-lhyp 37126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator