| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1l 1198 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | 
| 2 |  | hlclat 39359 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | 
| 3 | 1, 2 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ CLat) | 
| 4 |  | ssrab2 4080 | . . . . . 6
⊢ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾) | 
| 5 | 4 | a1i 11 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)) | 
| 6 |  | simpll3 1215 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑋 ⊆ 𝑌) | 
| 7 |  | simpr 484 | . . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) | 
| 8 | 6, 7 | sstrd 3994 | . . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) | 
| 9 | 8 | ex 412 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧) → 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧))) | 
| 10 | 9 | ss2rabdv 4076 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) | 
| 11 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 12 |  | eqid 2737 | . . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 13 |  | eqid 2737 | . . . . . 6
⊢
(glb‘𝐾) =
(glb‘𝐾) | 
| 14 | 11, 12, 13 | clatglbss 18564 | . . . . 5
⊢ ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾) ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) | 
| 15 | 3, 5, 10, 14 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) | 
| 16 |  | hlop 39363 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 17 | 1, 16 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ OP) | 
| 18 | 11, 13 | clatglbcl 18550 | . . . . . 6
⊢ ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) | 
| 19 | 3, 4, 18 | sylancl 586 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) | 
| 20 |  | ssrab2 4080 | . . . . . 6
⊢ {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾) | 
| 21 | 11, 13 | clatglbcl 18550 | . . . . . 6
⊢ ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) | 
| 22 | 3, 20, 21 | sylancl 586 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) | 
| 23 |  | eqid 2737 | . . . . . 6
⊢
(oc‘𝐾) =
(oc‘𝐾) | 
| 24 | 11, 12, 23 | oplecon3b 39201 | . . . . 5
⊢ ((𝐾 ∈ OP ∧
((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → (((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 25 | 17, 19, 22, 24 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → (((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 26 | 15, 25 | mpbid 232 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) | 
| 27 |  | simp1 1137 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 28 | 11, 23 | opoccl 39195 | . . . . 5
⊢ ((𝐾 ∈ OP ∧
((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) | 
| 29 | 17, 22, 28 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) | 
| 30 | 11, 23 | opoccl 39195 | . . . . 5
⊢ ((𝐾 ∈ OP ∧
((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) | 
| 31 | 17, 19, 30 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) | 
| 32 |  | dochss.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 33 |  | eqid 2737 | . . . . 5
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | 
| 34 | 11, 12, 32, 33 | dihord 41266 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) → ((((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 35 | 27, 29, 31, 34 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 36 | 26, 35 | mpbird 257 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 37 |  | dochss.u | . . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 38 |  | dochss.v | . . . 4
⊢ 𝑉 = (Base‘𝑈) | 
| 39 |  | dochss.o | . . . 4
⊢  ⊥ =
((ocH‘𝐾)‘𝑊) | 
| 40 | 11, 13, 23, 32, 33, 37, 38, 39 | dochval 41353 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉) → ( ⊥ ‘𝑌) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 41 | 40 | 3adant3 1133 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 42 |  | simp3 1139 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | 
| 43 |  | simp2 1138 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ 𝑉) | 
| 44 | 42, 43 | sstrd 3994 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑉) | 
| 45 | 11, 13, 23, 32, 33, 37, 38, 39 | dochval 41353 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 46 | 27, 44, 45 | syl2anc 584 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) | 
| 47 | 36, 41, 46 | 3sstr4d 4039 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |