Step | Hyp | Ref
| Expression |
1 | | simp1l 1195 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) |
2 | | hlclat 37299 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ CLat) |
4 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾) |
5 | 4 | a1i 11 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)) |
6 | | simpll3 1212 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑋 ⊆ 𝑌) |
7 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) |
8 | 6, 7 | sstrd 3927 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) |
9 | 8 | ex 412 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧) → 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧))) |
10 | 9 | ss2rabdv 4005 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) |
11 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
12 | | eqid 2738 |
. . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) |
13 | | eqid 2738 |
. . . . . 6
⊢
(glb‘𝐾) =
(glb‘𝐾) |
14 | 11, 12, 13 | clatglbss 18152 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾) ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) |
15 | 3, 5, 10, 14 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) |
16 | | hlop 37303 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
17 | 1, 16 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ OP) |
18 | 11, 13 | clatglbcl 18138 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) |
19 | 3, 4, 18 | sylancl 585 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) |
20 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾) |
21 | 11, 13 | clatglbcl 18138 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) |
22 | 3, 20, 21 | sylancl 585 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) |
23 | | eqid 2738 |
. . . . . 6
⊢
(oc‘𝐾) =
(oc‘𝐾) |
24 | 11, 12, 23 | oplecon3b 37141 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧
((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → (((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
25 | 17, 19, 22, 24 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → (((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
26 | 15, 25 | mpbid 231 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) |
27 | | simp1 1134 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | 11, 23 | opoccl 37135 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧
((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) |
29 | 17, 22, 28 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) |
30 | 11, 23 | opoccl 37135 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧
((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) |
31 | 17, 19, 30 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) |
32 | | dochss.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
33 | | eqid 2738 |
. . . . 5
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
34 | 11, 12, 32, 33 | dihord 39205 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) → ((((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
35 | 27, 29, 31, 34 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ((((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
36 | 26, 35 | mpbird 256 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
37 | | dochss.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
38 | | dochss.v |
. . . 4
⊢ 𝑉 = (Base‘𝑈) |
39 | | dochss.o |
. . . 4
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
40 | 11, 13, 23, 32, 33, 37, 38, 39 | dochval 39292 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉) → ( ⊥ ‘𝑌) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
41 | 40 | 3adant3 1130 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
42 | | simp3 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) |
43 | | simp2 1135 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ 𝑉) |
44 | 42, 43 | sstrd 3927 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑉) |
45 | 11, 13, 23, 32, 33, 37, 38, 39 | dochval 39292 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
46 | 27, 44, 45 | syl2anc 583 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))) |
47 | 36, 41, 46 | 3sstr4d 3964 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |