Step | Hyp | Ref
| Expression |
1 | | simp1l 1197 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β πΎ β HL) |
2 | | hlclat 38216 |
. . . . . 6
β’ (πΎ β HL β πΎ β CLat) |
3 | 1, 2 | syl 17 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β πΎ β CLat) |
4 | | ssrab2 4076 |
. . . . . 6
β’ {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)} β (BaseβπΎ) |
5 | 4 | a1i 11 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)} β (BaseβπΎ)) |
6 | | simpll3 1214 |
. . . . . . . 8
β’
(((((πΎ β HL
β§ π β π») β§ π β π β§ π β π) β§ π§ β (BaseβπΎ)) β§ π β (((DIsoHβπΎ)βπ)βπ§)) β π β π) |
7 | | simpr 485 |
. . . . . . . 8
β’
(((((πΎ β HL
β§ π β π») β§ π β π β§ π β π) β§ π§ β (BaseβπΎ)) β§ π β (((DIsoHβπΎ)βπ)βπ§)) β π β (((DIsoHβπΎ)βπ)βπ§)) |
8 | 6, 7 | sstrd 3991 |
. . . . . . 7
β’
(((((πΎ β HL
β§ π β π») β§ π β π β§ π β π) β§ π§ β (BaseβπΎ)) β§ π β (((DIsoHβπΎ)βπ)βπ§)) β π β (((DIsoHβπΎ)βπ)βπ§)) |
9 | 8 | ex 413 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ π β π β§ π β π) β§ π§ β (BaseβπΎ)) β (π β (((DIsoHβπΎ)βπ)βπ§) β π β (((DIsoHβπΎ)βπ)βπ§))) |
10 | 9 | ss2rabdv 4072 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)} β {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) |
11 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
12 | | eqid 2732 |
. . . . . 6
β’
(leβπΎ) =
(leβπΎ) |
13 | | eqid 2732 |
. . . . . 6
β’
(glbβπΎ) =
(glbβπΎ) |
14 | 11, 12, 13 | clatglbss 18468 |
. . . . 5
β’ ((πΎ β CLat β§ {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)} β (BaseβπΎ) β§ {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)} β {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β ((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})(leβπΎ)((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})) |
15 | 3, 5, 10, 14 | syl3anc 1371 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})(leβπΎ)((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})) |
16 | | hlop 38220 |
. . . . . 6
β’ (πΎ β HL β πΎ β OP) |
17 | 1, 16 | syl 17 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β πΎ β OP) |
18 | 11, 13 | clatglbcl 18454 |
. . . . . 6
β’ ((πΎ β CLat β§ {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)} β (BaseβπΎ)) β ((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β (BaseβπΎ)) |
19 | 3, 4, 18 | sylancl 586 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β (BaseβπΎ)) |
20 | | ssrab2 4076 |
. . . . . 6
β’ {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)} β (BaseβπΎ) |
21 | 11, 13 | clatglbcl 18454 |
. . . . . 6
β’ ((πΎ β CLat β§ {π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)} β (BaseβπΎ)) β ((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β (BaseβπΎ)) |
22 | 3, 20, 21 | sylancl 586 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β (BaseβπΎ)) |
23 | | eqid 2732 |
. . . . . 6
β’
(ocβπΎ) =
(ocβπΎ) |
24 | 11, 12, 23 | oplecon3b 38058 |
. . . . 5
β’ ((πΎ β OP β§
((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β (BaseβπΎ) β§ ((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β (BaseβπΎ)) β (((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})(leβπΎ)((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))(leβπΎ)((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
25 | 17, 19, 22, 24 | syl3anc 1371 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})(leβπΎ)((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))(leβπΎ)((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
26 | 15, 25 | mpbid 231 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))(leβπΎ)((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))) |
27 | | simp1 1136 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (πΎ β HL β§ π β π»)) |
28 | 11, 23 | opoccl 38052 |
. . . . 5
β’ ((πΎ β OP β§
((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β (BaseβπΎ)) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})) β (BaseβπΎ)) |
29 | 17, 22, 28 | syl2anc 584 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})) β (BaseβπΎ)) |
30 | 11, 23 | opoccl 38052 |
. . . . 5
β’ ((πΎ β OP β§
((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}) β (BaseβπΎ)) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})) β (BaseβπΎ)) |
31 | 17, 19, 30 | syl2anc 584 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})) β (BaseβπΎ)) |
32 | | dochss.h |
. . . . 5
β’ π» = (LHypβπΎ) |
33 | | eqid 2732 |
. . . . 5
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
34 | 11, 12, 32, 33 | dihord 40123 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})) β (BaseβπΎ) β§ ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})) β (BaseβπΎ)) β ((((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))) β (((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))(leβπΎ)((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
35 | 27, 29, 31, 34 | syl3anc 1371 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ((((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))) β (((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))) β ((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))(leβπΎ)((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
36 | 26, 35 | mpbird 256 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)}))) β (((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
37 | | dochss.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
38 | | dochss.v |
. . . 4
β’ π = (Baseβπ) |
39 | | dochss.o |
. . . 4
β’ β₯ =
((ocHβπΎ)βπ) |
40 | 11, 13, 23, 32, 33, 37, 38, 39 | dochval 40210 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) = (((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
41 | 40 | 3adant3 1132 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ βπ) = (((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
42 | | simp3 1138 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β π) |
43 | | simp2 1137 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β π) |
44 | 42, 43 | sstrd 3991 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β π β π) |
45 | 11, 13, 23, 32, 33, 37, 38, 39 | dochval 40210 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) = (((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
46 | 27, 44, 45 | syl2anc 584 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ βπ) = (((DIsoHβπΎ)βπ)β((ocβπΎ)β((glbβπΎ)β{π§ β (BaseβπΎ) β£ π β (((DIsoHβπΎ)βπ)βπ§)})))) |
47 | 36, 41, 46 | 3sstr4d 4028 |
1
β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)) |