Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochss Structured version   Visualization version   GIF version

Theorem dochss 38610
Description: Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h 𝐻 = (LHyp‘𝐾)
dochss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochss.v 𝑉 = (Base‘𝑈)
dochss.o = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))

Proof of Theorem dochss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → 𝐾 ∈ HL)
2 hlclat 36603 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
31, 2syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → 𝐾 ∈ CLat)
4 ssrab2 4042 . . . . . 6 {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)
54a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾))
6 simpll3 1211 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑋𝑌)
7 simpr 488 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧))
86, 7sstrd 3963 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)) → 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧))
98ex 416 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧) → 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)))
109ss2rabdv 4038 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})
11 eqid 2824 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2824 . . . . . 6 (le‘𝐾) = (le‘𝐾)
13 eqid 2824 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
1411, 12, 13clatglbss 17737 . . . . 5 ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾) ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))
153, 5, 10, 14syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))
16 hlop 36607 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
171, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → 𝐾 ∈ OP)
1811, 13clatglbcl 17724 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾))
193, 4, 18sylancl 589 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾))
20 ssrab2 4042 . . . . . 6 {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)
2111, 13clatglbcl 17724 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)} ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾))
223, 20, 21sylancl 589 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾))
23 eqid 2824 . . . . . 6 (oc‘𝐾) = (oc‘𝐾)
2411, 12, 23oplecon3b 36445 . . . . 5 ((𝐾 ∈ OP ∧ ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → (((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
2517, 19, 22, 24syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → (((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})(le‘𝐾)((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
2615, 25mpbid 235 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})))
27 simp1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2811, 23opoccl 36439 . . . . 5 ((𝐾 ∈ OP ∧ ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾))
2917, 22, 28syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾))
3011, 23opoccl 36439 . . . . 5 ((𝐾 ∈ OP ∧ ((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾))
3117, 19, 30syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾))
32 dochss.h . . . . 5 𝐻 = (LHyp‘𝐾)
33 eqid 2824 . . . . 5 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
3411, 12, 32, 33dihord 38509 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾) ∧ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)})) ∈ (Base‘𝐾)) → ((((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
3527, 29, 31, 34syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ((((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ↔ ((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))(le‘𝐾)((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
3626, 35mpbird 260 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))) ⊆ (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
37 dochss.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
38 dochss.v . . . 4 𝑉 = (Base‘𝑈)
39 dochss.o . . . 4 = ((ocH‘𝐾)‘𝑊)
4011, 13, 23, 32, 33, 37, 38, 39dochval 38596 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ( 𝑌) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
41403adant3 1129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ( 𝑌) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑌 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
42 simp3 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → 𝑋𝑌)
43 simp2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → 𝑌𝑉)
4442, 43sstrd 3963 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → 𝑋𝑉)
4511, 13, 23, 32, 33, 37, 38, 39dochval 38596 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
4627, 44, 45syl2anc 587 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ( 𝑋) = (((DIsoH‘𝐾)‘𝑊)‘((oc‘𝐾)‘((glb‘𝐾)‘{𝑧 ∈ (Base‘𝐾) ∣ 𝑋 ⊆ (((DIsoH‘𝐾)‘𝑊)‘𝑧)}))))
4736, 41, 463sstr4d 4000 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  {crab 3137  wss 3919   class class class wbr 5052  cfv 6343  Basecbs 16483  lecple 16572  occoc 16573  glbcglb 17553  CLatccla 17717  OPcops 36417  HLchlt 36595  LHypclh 37229  DVecHcdvh 38323  DIsoHcdih 38473  ocHcoch 38592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-riotaBAD 36198
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-tpos 7888  df-undef 7935  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-0g 16715  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875  df-oposet 36421  df-ol 36423  df-oml 36424  df-covers 36511  df-ats 36512  df-atl 36543  df-cvlat 36567  df-hlat 36596  df-llines 36743  df-lplanes 36744  df-lvols 36745  df-lines 36746  df-psubsp 36748  df-pmap 36749  df-padd 37041  df-lhyp 37233  df-laut 37234  df-ldil 37349  df-ltrn 37350  df-trl 37404  df-tendo 38000  df-edring 38002  df-disoa 38274  df-dvech 38324  df-dib 38384  df-dic 38418  df-dih 38474  df-doch 38593
This theorem is referenced by:  dochsscl  38613  dochord  38615  dihoml4  38622  dochocsp  38624  dochdmj1  38635  dochpolN  38735  lclkrlem2p  38767  lclkrslem1  38782  lclkrslem2  38783  lcfrvalsnN  38786  mapdsn  38886
  Copyright terms: Public domain W3C validator