MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucun Structured version   Visualization version   GIF version

Theorem ordsucun 7358
Description: The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordsucun ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴𝐵) = (suc 𝐴 ∪ suc 𝐵))

Proof of Theorem ordsucun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordun 6132 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
2 ordsuc 7347 . . . . 5 (Ord (𝐴𝐵) ↔ Ord suc (𝐴𝐵))
3 ordelon 6055 . . . . . 6 ((Ord suc (𝐴𝐵) ∧ 𝑥 ∈ suc (𝐴𝐵)) → 𝑥 ∈ On)
43ex 405 . . . . 5 (Ord suc (𝐴𝐵) → (𝑥 ∈ suc (𝐴𝐵) → 𝑥 ∈ On))
52, 4sylbi 209 . . . 4 (Ord (𝐴𝐵) → (𝑥 ∈ suc (𝐴𝐵) → 𝑥 ∈ On))
61, 5syl 17 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ suc (𝐴𝐵) → 𝑥 ∈ On))
7 ordsuc 7347 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
8 ordsuc 7347 . . . 4 (Ord 𝐵 ↔ Ord suc 𝐵)
9 ordun 6132 . . . . 5 ((Ord suc 𝐴 ∧ Ord suc 𝐵) → Ord (suc 𝐴 ∪ suc 𝐵))
10 ordelon 6055 . . . . . 6 ((Ord (suc 𝐴 ∪ suc 𝐵) ∧ 𝑥 ∈ (suc 𝐴 ∪ suc 𝐵)) → 𝑥 ∈ On)
1110ex 405 . . . . 5 (Ord (suc 𝐴 ∪ suc 𝐵) → (𝑥 ∈ (suc 𝐴 ∪ suc 𝐵) → 𝑥 ∈ On))
129, 11syl 17 . . . 4 ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (𝑥 ∈ (suc 𝐴 ∪ suc 𝐵) → 𝑥 ∈ On))
137, 8, 12syl2anb 588 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ (suc 𝐴 ∪ suc 𝐵) → 𝑥 ∈ On))
14 ordssun 6130 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ⊆ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵)))
1514adantl 474 . . . . . 6 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥 ⊆ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵)))
16 ordsssuc 6117 . . . . . . 7 ((𝑥 ∈ On ∧ Ord (𝐴𝐵)) → (𝑥 ⊆ (𝐴𝐵) ↔ 𝑥 ∈ suc (𝐴𝐵)))
171, 16sylan2 583 . . . . . 6 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥 ⊆ (𝐴𝐵) ↔ 𝑥 ∈ suc (𝐴𝐵)))
18 ordsssuc 6117 . . . . . . . 8 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝑥 ∈ suc 𝐴))
1918adantrr 704 . . . . . . 7 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥𝐴𝑥 ∈ suc 𝐴))
20 ordsssuc 6117 . . . . . . . 8 ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
2120adantrl 703 . . . . . . 7 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥𝐵𝑥 ∈ suc 𝐵))
2219, 21orbi12d 902 . . . . . 6 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → ((𝑥𝐴𝑥𝐵) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ suc 𝐵)))
2315, 17, 223bitr3d 301 . . . . 5 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥 ∈ suc (𝐴𝐵) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ suc 𝐵)))
24 elun 4016 . . . . 5 (𝑥 ∈ (suc 𝐴 ∪ suc 𝐵) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ suc 𝐵))
2523, 24syl6bbr 281 . . . 4 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥 ∈ suc (𝐴𝐵) ↔ 𝑥 ∈ (suc 𝐴 ∪ suc 𝐵)))
2625expcom 406 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ On → (𝑥 ∈ suc (𝐴𝐵) ↔ 𝑥 ∈ (suc 𝐴 ∪ suc 𝐵))))
276, 13, 26pm5.21ndd 372 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ suc (𝐴𝐵) ↔ 𝑥 ∈ (suc 𝐴 ∪ suc 𝐵)))
2827eqrdv 2776 1 ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴𝐵) = (suc 𝐴 ∪ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  cun 3829  wss 3831  Ord word 6030  Oncon0 6031  suc csuc 6033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-tr 5032  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-ord 6034  df-on 6035  df-suc 6037
This theorem is referenced by:  rankprb  9076  noetalem4  32741
  Copyright terms: Public domain W3C validator