MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucun Structured version   Visualization version   GIF version

Theorem ordsucun 7815
Description: The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordsucun ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴𝐵) = (suc 𝐴 ∪ suc 𝐵))

Proof of Theorem ordsucun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordun 6468 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
2 ordsuc 7803 . . . . 5 (Ord (𝐴𝐵) ↔ Ord suc (𝐴𝐵))
3 ordelon 6388 . . . . . 6 ((Ord suc (𝐴𝐵) ∧ 𝑥 ∈ suc (𝐴𝐵)) → 𝑥 ∈ On)
43ex 413 . . . . 5 (Ord suc (𝐴𝐵) → (𝑥 ∈ suc (𝐴𝐵) → 𝑥 ∈ On))
52, 4sylbi 216 . . . 4 (Ord (𝐴𝐵) → (𝑥 ∈ suc (𝐴𝐵) → 𝑥 ∈ On))
61, 5syl 17 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ suc (𝐴𝐵) → 𝑥 ∈ On))
7 ordsuc 7803 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
8 ordsuc 7803 . . . 4 (Ord 𝐵 ↔ Ord suc 𝐵)
9 ordun 6468 . . . . 5 ((Ord suc 𝐴 ∧ Ord suc 𝐵) → Ord (suc 𝐴 ∪ suc 𝐵))
10 ordelon 6388 . . . . . 6 ((Ord (suc 𝐴 ∪ suc 𝐵) ∧ 𝑥 ∈ (suc 𝐴 ∪ suc 𝐵)) → 𝑥 ∈ On)
1110ex 413 . . . . 5 (Ord (suc 𝐴 ∪ suc 𝐵) → (𝑥 ∈ (suc 𝐴 ∪ suc 𝐵) → 𝑥 ∈ On))
129, 11syl 17 . . . 4 ((Ord suc 𝐴 ∧ Ord suc 𝐵) → (𝑥 ∈ (suc 𝐴 ∪ suc 𝐵) → 𝑥 ∈ On))
137, 8, 12syl2anb 598 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ (suc 𝐴 ∪ suc 𝐵) → 𝑥 ∈ On))
14 ordssun 6466 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ⊆ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵)))
1514adantl 482 . . . . . 6 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥 ⊆ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵)))
16 ordsssuc 6453 . . . . . . 7 ((𝑥 ∈ On ∧ Ord (𝐴𝐵)) → (𝑥 ⊆ (𝐴𝐵) ↔ 𝑥 ∈ suc (𝐴𝐵)))
171, 16sylan2 593 . . . . . 6 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥 ⊆ (𝐴𝐵) ↔ 𝑥 ∈ suc (𝐴𝐵)))
18 ordsssuc 6453 . . . . . . . 8 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝑥 ∈ suc 𝐴))
1918adantrr 715 . . . . . . 7 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥𝐴𝑥 ∈ suc 𝐴))
20 ordsssuc 6453 . . . . . . . 8 ((𝑥 ∈ On ∧ Ord 𝐵) → (𝑥𝐵𝑥 ∈ suc 𝐵))
2120adantrl 714 . . . . . . 7 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥𝐵𝑥 ∈ suc 𝐵))
2219, 21orbi12d 917 . . . . . 6 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → ((𝑥𝐴𝑥𝐵) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ suc 𝐵)))
2315, 17, 223bitr3d 308 . . . . 5 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥 ∈ suc (𝐴𝐵) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ suc 𝐵)))
24 elun 4148 . . . . 5 (𝑥 ∈ (suc 𝐴 ∪ suc 𝐵) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ suc 𝐵))
2523, 24bitr4di 288 . . . 4 ((𝑥 ∈ On ∧ (Ord 𝐴 ∧ Ord 𝐵)) → (𝑥 ∈ suc (𝐴𝐵) ↔ 𝑥 ∈ (suc 𝐴 ∪ suc 𝐵)))
2625expcom 414 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ On → (𝑥 ∈ suc (𝐴𝐵) ↔ 𝑥 ∈ (suc 𝐴 ∪ suc 𝐵))))
276, 13, 26pm5.21ndd 380 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑥 ∈ suc (𝐴𝐵) ↔ 𝑥 ∈ (suc 𝐴 ∪ suc 𝐵)))
2827eqrdv 2730 1 ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴𝐵) = (suc 𝐴 ∪ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  cun 3946  wss 3948  Ord word 6363  Oncon0 6364  suc csuc 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368  df-suc 6370
This theorem is referenced by:  rankprb  9848
  Copyright terms: Public domain W3C validator