Proof of Theorem onunel
| Step | Hyp | Ref
| Expression |
| 1 | | ssequn1 4186 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| 2 | 1 | biimpi 216 |
. . . . 5
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐵) = 𝐵) |
| 3 | 2 | eleq1d 2826 |
. . . 4
⊢ (𝐴 ⊆ 𝐵 → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 4 | 3 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
| 5 | | ontr2 6431 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| 6 | 5 | 3adant2 1132 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| 7 | 6 | expdimp 452 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ 𝐶 → 𝐴 ∈ 𝐶)) |
| 8 | 7 | pm4.71rd 562 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
| 9 | 4, 8 | bitrd 279 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
| 10 | | ssequn2 4189 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) |
| 11 | 10 | biimpi 216 |
. . . . 5
⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) |
| 12 | 11 | eleq1d 2826 |
. . . 4
⊢ (𝐵 ⊆ 𝐴 → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
| 13 | 12 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
| 14 | | ontr2 6431 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐵 ∈ 𝐶)) |
| 15 | 14 | 3adant1 1131 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐵 ∈ 𝐶)) |
| 16 | 15 | expdimp 452 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∈ 𝐶 → 𝐵 ∈ 𝐶)) |
| 17 | 16 | pm4.71d 561 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
| 18 | 13, 17 | bitrd 279 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
| 19 | | eloni 6394 |
. . . 4
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 20 | | eloni 6394 |
. . . 4
⊢ (𝐵 ∈ On → Ord 𝐵) |
| 21 | | ordtri2or2 6483 |
. . . 4
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 22 | 19, 20, 21 | syl2an 596 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 23 | 22 | 3adant3 1133 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 24 | 9, 18, 23 | mpjaodan 961 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |