MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onunel Structured version   Visualization version   GIF version

Theorem onunel 6489
Description: The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.)
Assertion
Ref Expression
onunel ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem onunel
StepHypRef Expression
1 ssequn1 4186 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
21biimpi 216 . . . . 5 (𝐴𝐵 → (𝐴𝐵) = 𝐵)
32eleq1d 2826 . . . 4 (𝐴𝐵 → ((𝐴𝐵) ∈ 𝐶𝐵𝐶))
43adantl 481 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → ((𝐴𝐵) ∈ 𝐶𝐵𝐶))
5 ontr2 6431 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
653adant2 1132 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
76expdimp 452 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐵𝐶𝐴𝐶))
87pm4.71rd 562 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐵𝐶 ↔ (𝐴𝐶𝐵𝐶)))
94, 8bitrd 279 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
10 ssequn2 4189 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
1110biimpi 216 . . . . 5 (𝐵𝐴 → (𝐴𝐵) = 𝐴)
1211eleq1d 2826 . . . 4 (𝐵𝐴 → ((𝐴𝐵) ∈ 𝐶𝐴𝐶))
1312adantl 481 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → ((𝐴𝐵) ∈ 𝐶𝐴𝐶))
14 ontr2 6431 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐴𝐴𝐶) → 𝐵𝐶))
15143adant1 1131 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐴𝐴𝐶) → 𝐵𝐶))
1615expdimp 452 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → (𝐴𝐶𝐵𝐶))
1716pm4.71d 561 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → (𝐴𝐶 ↔ (𝐴𝐶𝐵𝐶)))
1813, 17bitrd 279 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
19 eloni 6394 . . . 4 (𝐴 ∈ On → Ord 𝐴)
20 eloni 6394 . . . 4 (𝐵 ∈ On → Ord 𝐵)
21 ordtri2or2 6483 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
2219, 20, 21syl2an 596 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴))
23223adant3 1133 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵𝐵𝐴))
249, 18, 23mpjaodan 961 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  cun 3949  wss 3951  Ord word 6383  Oncon0 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388
This theorem is referenced by:  addsproplem2  28003  negsproplem2  28061  mulsproplem5  28146  mulsproplem6  28147  mulsproplem7  28148  mulsproplem8  28149
  Copyright terms: Public domain W3C validator