Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onunel Structured version   Visualization version   GIF version

Theorem onunel 33689
Description: The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.)
Assertion
Ref Expression
onunel ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem onunel
StepHypRef Expression
1 ssequn1 4114 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
21biimpi 215 . . . . 5 (𝐴𝐵 → (𝐴𝐵) = 𝐵)
32eleq1d 2823 . . . 4 (𝐴𝐵 → ((𝐴𝐵) ∈ 𝐶𝐵𝐶))
43adantl 482 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → ((𝐴𝐵) ∈ 𝐶𝐵𝐶))
5 ontr2 6313 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
653adant2 1130 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
76expdimp 453 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐵𝐶𝐴𝐶))
87pm4.71rd 563 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐵𝐶 ↔ (𝐴𝐶𝐵𝐶)))
94, 8bitrd 278 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
10 ssequn2 4117 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
1110biimpi 215 . . . . 5 (𝐵𝐴 → (𝐴𝐵) = 𝐴)
1211eleq1d 2823 . . . 4 (𝐵𝐴 → ((𝐴𝐵) ∈ 𝐶𝐴𝐶))
1312adantl 482 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → ((𝐴𝐵) ∈ 𝐶𝐴𝐶))
14 ontr2 6313 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐴𝐴𝐶) → 𝐵𝐶))
15143adant1 1129 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐴𝐴𝐶) → 𝐵𝐶))
1615expdimp 453 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → (𝐴𝐶𝐵𝐶))
1716pm4.71d 562 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → (𝐴𝐶 ↔ (𝐴𝐶𝐵𝐶)))
1813, 17bitrd 278 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
19 eloni 6276 . . . 4 (𝐴 ∈ On → Ord 𝐴)
20 eloni 6276 . . . 4 (𝐵 ∈ On → Ord 𝐵)
21 ordtri2or2 6362 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
2219, 20, 21syl2an 596 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴))
23223adant3 1131 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵𝐵𝐴))
249, 18, 23mpjaodan 956 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cun 3885  wss 3887  Ord word 6265  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator