Proof of Theorem onunel
Step | Hyp | Ref
| Expression |
1 | | ssequn1 4110 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
2 | 1 | biimpi 215 |
. . . . 5
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐵) = 𝐵) |
3 | 2 | eleq1d 2823 |
. . . 4
⊢ (𝐴 ⊆ 𝐵 → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
4 | 3 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
5 | | ontr2 6298 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
6 | 5 | 3adant2 1129 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
7 | 6 | expdimp 452 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ 𝐶 → 𝐴 ∈ 𝐶)) |
8 | 7 | pm4.71rd 562 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
9 | 4, 8 | bitrd 278 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
10 | | ssequn2 4113 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) |
11 | 10 | biimpi 215 |
. . . . 5
⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) |
12 | 11 | eleq1d 2823 |
. . . 4
⊢ (𝐵 ⊆ 𝐴 → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
13 | 12 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
14 | | ontr2 6298 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐵 ∈ 𝐶)) |
15 | 14 | 3adant1 1128 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐵 ∈ 𝐶)) |
16 | 15 | expdimp 452 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∈ 𝐶 → 𝐵 ∈ 𝐶)) |
17 | 16 | pm4.71d 561 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
18 | 13, 17 | bitrd 278 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵 ⊆ 𝐴) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |
19 | | eloni 6261 |
. . . 4
⊢ (𝐴 ∈ On → Ord 𝐴) |
20 | | eloni 6261 |
. . . 4
⊢ (𝐵 ∈ On → Ord 𝐵) |
21 | | ordtri2or2 6347 |
. . . 4
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
22 | 19, 20, 21 | syl2an 595 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
23 | 22 | 3adant3 1130 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
24 | 9, 18, 23 | mpjaodan 955 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∪ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶))) |