Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onunel Structured version   Visualization version   GIF version

Theorem onunel 33592
Description: The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024.)
Assertion
Ref Expression
onunel ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem onunel
StepHypRef Expression
1 ssequn1 4110 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
21biimpi 215 . . . . 5 (𝐴𝐵 → (𝐴𝐵) = 𝐵)
32eleq1d 2823 . . . 4 (𝐴𝐵 → ((𝐴𝐵) ∈ 𝐶𝐵𝐶))
43adantl 481 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → ((𝐴𝐵) ∈ 𝐶𝐵𝐶))
5 ontr2 6298 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
653adant2 1129 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
76expdimp 452 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐵𝐶𝐴𝐶))
87pm4.71rd 562 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐵𝐶 ↔ (𝐴𝐶𝐵𝐶)))
94, 8bitrd 278 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
10 ssequn2 4113 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
1110biimpi 215 . . . . 5 (𝐵𝐴 → (𝐴𝐵) = 𝐴)
1211eleq1d 2823 . . . 4 (𝐵𝐴 → ((𝐴𝐵) ∈ 𝐶𝐴𝐶))
1312adantl 481 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → ((𝐴𝐵) ∈ 𝐶𝐴𝐶))
14 ontr2 6298 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐴𝐴𝐶) → 𝐵𝐶))
15143adant1 1128 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐴𝐴𝐶) → 𝐵𝐶))
1615expdimp 452 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → (𝐴𝐶𝐵𝐶))
1716pm4.71d 561 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → (𝐴𝐶 ↔ (𝐴𝐶𝐵𝐶)))
1813, 17bitrd 278 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐵𝐴) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
19 eloni 6261 . . . 4 (𝐴 ∈ On → Ord 𝐴)
20 eloni 6261 . . . 4 (𝐵 ∈ On → Ord 𝐵)
21 ordtri2or2 6347 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
2219, 20, 21syl2an 595 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴))
23223adant3 1130 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵𝐵𝐴))
249, 18, 23mpjaodan 955 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵) ∈ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cun 3881  wss 3883  Ord word 6250  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator