Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordequn | Structured version Visualization version GIF version |
Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
ordequn | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or2 6347 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
2 | 1 | orcomd 867 | . 2 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶)) |
3 | ssequn2 4113 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
4 | eqeq1 2742 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵)) | |
5 | 3, 4 | bitr4id 289 | . . 3 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐶 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) |
6 | ssequn1 4110 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
7 | eqeq1 2742 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶)) | |
8 | 6, 7 | bitr4id 289 | . . 3 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐵 ⊆ 𝐶 ↔ 𝐴 = 𝐶)) |
9 | 5, 8 | orbi12d 915 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → ((𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
10 | 2, 9 | syl5ibcom 244 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∪ cun 3881 ⊆ wss 3883 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: ordun 6352 inar1 10462 |
Copyright terms: Public domain | W3C validator |