MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordequn Structured version   Visualization version   GIF version

Theorem ordequn 6351
Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordequn ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵𝐴 = 𝐶)))

Proof of Theorem ordequn
StepHypRef Expression
1 ordtri2or2 6347 . . 3 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
21orcomd 867 . 2 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶𝐵𝐵𝐶))
3 ssequn2 4113 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
4 eqeq1 2742 . . . 4 (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵 ↔ (𝐵𝐶) = 𝐵))
53, 4bitr4id 289 . . 3 (𝐴 = (𝐵𝐶) → (𝐶𝐵𝐴 = 𝐵))
6 ssequn1 4110 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
7 eqeq1 2742 . . . 4 (𝐴 = (𝐵𝐶) → (𝐴 = 𝐶 ↔ (𝐵𝐶) = 𝐶))
86, 7bitr4id 289 . . 3 (𝐴 = (𝐵𝐶) → (𝐵𝐶𝐴 = 𝐶))
95, 8orbi12d 915 . 2 (𝐴 = (𝐵𝐶) → ((𝐶𝐵𝐵𝐶) ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
102, 9syl5ibcom 244 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  cun 3881  wss 3883  Ord word 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254
This theorem is referenced by:  ordun  6352  inar1  10462
  Copyright terms: Public domain W3C validator