MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordequn Structured version   Visualization version   GIF version

Theorem ordequn 6471
Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordequn ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵𝐴 = 𝐶)))

Proof of Theorem ordequn
StepHypRef Expression
1 ordtri2or2 6467 . . 3 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
21orcomd 869 . 2 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶𝐵𝐵𝐶))
3 ssequn2 4181 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
4 eqeq1 2730 . . . 4 (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵 ↔ (𝐵𝐶) = 𝐵))
53, 4bitr4id 289 . . 3 (𝐴 = (𝐵𝐶) → (𝐶𝐵𝐴 = 𝐵))
6 ssequn1 4178 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
7 eqeq1 2730 . . . 4 (𝐴 = (𝐵𝐶) → (𝐴 = 𝐶 ↔ (𝐵𝐶) = 𝐶))
86, 7bitr4id 289 . . 3 (𝐴 = (𝐵𝐶) → (𝐵𝐶𝐴 = 𝐶))
95, 8orbi12d 916 . 2 (𝐴 = (𝐵𝐶) → ((𝐶𝐵𝐵𝐶) ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
102, 9syl5ibcom 244 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1534  cun 3944  wss 3946  Ord word 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-tr 5263  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-ord 6371
This theorem is referenced by:  ordun  6472  inar1  10809
  Copyright terms: Public domain W3C validator