![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordequn | Structured version Visualization version GIF version |
Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
ordequn | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or2 6463 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
2 | 1 | orcomd 868 | . 2 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶)) |
3 | ssequn2 4183 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
4 | eqeq1 2735 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵)) | |
5 | 3, 4 | bitr4id 290 | . . 3 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐶 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) |
6 | ssequn1 4180 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
7 | eqeq1 2735 | . . . 4 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶)) | |
8 | 6, 7 | bitr4id 290 | . . 3 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → (𝐵 ⊆ 𝐶 ↔ 𝐴 = 𝐶)) |
9 | 5, 8 | orbi12d 916 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) → ((𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
10 | 2, 9 | syl5ibcom 244 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵 ∪ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∪ cun 3946 ⊆ wss 3948 Ord word 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 |
This theorem is referenced by: ordun 6468 inar1 10773 |
Copyright terms: Public domain | W3C validator |