MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordequn Structured version   Visualization version   GIF version

Theorem ordequn 6457
Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordequn ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵𝐴 = 𝐶)))

Proof of Theorem ordequn
StepHypRef Expression
1 ordtri2or2 6453 . . 3 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
21orcomd 871 . 2 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶𝐵𝐵𝐶))
3 ssequn2 4164 . . . 4 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
4 eqeq1 2739 . . . 4 (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵 ↔ (𝐵𝐶) = 𝐵))
53, 4bitr4id 290 . . 3 (𝐴 = (𝐵𝐶) → (𝐶𝐵𝐴 = 𝐵))
6 ssequn1 4161 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
7 eqeq1 2739 . . . 4 (𝐴 = (𝐵𝐶) → (𝐴 = 𝐶 ↔ (𝐵𝐶) = 𝐶))
86, 7bitr4id 290 . . 3 (𝐴 = (𝐵𝐶) → (𝐵𝐶𝐴 = 𝐶))
95, 8orbi12d 918 . 2 (𝐴 = (𝐵𝐶) → ((𝐶𝐵𝐵𝐶) ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
102, 9syl5ibcom 245 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐵𝐶) → (𝐴 = 𝐵𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  cun 3924  wss 3926  Ord word 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355
This theorem is referenced by:  ordun  6458  inar1  10789
  Copyright terms: Public domain W3C validator