![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6b | Structured version Visualization version GIF version |
Description: Lemmma for hdmap1l6 40334. (Contributed by NM, 24-Apr-2015.) |
Ref | Expression |
---|---|
hdmap1l6.h | β’ π» = (LHypβπΎ) |
hdmap1l6.u | β’ π = ((DVecHβπΎ)βπ) |
hdmap1l6.v | β’ π = (Baseβπ) |
hdmap1l6.p | β’ + = (+gβπ) |
hdmap1l6.s | β’ β = (-gβπ) |
hdmap1l6c.o | β’ 0 = (0gβπ) |
hdmap1l6.n | β’ π = (LSpanβπ) |
hdmap1l6.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmap1l6.d | β’ π· = (BaseβπΆ) |
hdmap1l6.a | β’ β = (+gβπΆ) |
hdmap1l6.r | β’ π = (-gβπΆ) |
hdmap1l6.q | β’ π = (0gβπΆ) |
hdmap1l6.l | β’ πΏ = (LSpanβπΆ) |
hdmap1l6.m | β’ π = ((mapdβπΎ)βπ) |
hdmap1l6.i | β’ πΌ = ((HDMap1βπΎ)βπ) |
hdmap1l6.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmap1l6.f | β’ (π β πΉ β π·) |
hdmap1l6cl.x | β’ (π β π β (π β { 0 })) |
hdmap1l6.mn | β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) |
hdmap1l6b.y | β’ (π β π = 0 ) |
hdmap1l6b.z | β’ (π β π β π) |
hdmap1l6b.ne | β’ (π β Β¬ π β (πβ{π, π})) |
Ref | Expression |
---|---|
hdmap1l6b | β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1l6.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | hdmap1l6.c | . . . . 5 β’ πΆ = ((LCDualβπΎ)βπ) | |
3 | hdmap1l6.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
4 | 1, 2, 3 | lcdlmod 40105 | . . . 4 β’ (π β πΆ β LMod) |
5 | lmodgrp 20372 | . . . 4 β’ (πΆ β LMod β πΆ β Grp) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π β πΆ β Grp) |
7 | hdmap1l6.u | . . . 4 β’ π = ((DVecHβπΎ)βπ) | |
8 | hdmap1l6.v | . . . 4 β’ π = (Baseβπ) | |
9 | hdmap1l6c.o | . . . 4 β’ 0 = (0gβπ) | |
10 | hdmap1l6.n | . . . 4 β’ π = (LSpanβπ) | |
11 | hdmap1l6.d | . . . 4 β’ π· = (BaseβπΆ) | |
12 | hdmap1l6.l | . . . 4 β’ πΏ = (LSpanβπΆ) | |
13 | hdmap1l6.m | . . . 4 β’ π = ((mapdβπΎ)βπ) | |
14 | hdmap1l6.i | . . . 4 β’ πΌ = ((HDMap1βπΎ)βπ) | |
15 | hdmap1l6.f | . . . 4 β’ (π β πΉ β π·) | |
16 | hdmap1l6.mn | . . . 4 β’ (π β (πβ(πβ{π})) = (πΏβ{πΉ})) | |
17 | 1, 7, 3 | dvhlvec 39622 | . . . . . 6 β’ (π β π β LVec) |
18 | hdmap1l6cl.x | . . . . . . 7 β’ (π β π β (π β { 0 })) | |
19 | 18 | eldifad 3926 | . . . . . 6 β’ (π β π β π) |
20 | hdmap1l6b.y | . . . . . . 7 β’ (π β π = 0 ) | |
21 | 1, 7, 3 | dvhlmod 39623 | . . . . . . . 8 β’ (π β π β LMod) |
22 | 8, 9 | lmod0vcl 20395 | . . . . . . . 8 β’ (π β LMod β 0 β π) |
23 | 21, 22 | syl 17 | . . . . . . 7 β’ (π β 0 β π) |
24 | 20, 23 | eqeltrd 2834 | . . . . . 6 β’ (π β π β π) |
25 | hdmap1l6b.z | . . . . . 6 β’ (π β π β π) | |
26 | hdmap1l6b.ne | . . . . . 6 β’ (π β Β¬ π β (πβ{π, π})) | |
27 | 8, 10, 17, 19, 24, 25, 26 | lspindpi 20638 | . . . . 5 β’ (π β ((πβ{π}) β (πβ{π}) β§ (πβ{π}) β (πβ{π}))) |
28 | 27 | simprd 497 | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) |
29 | 1, 7, 8, 9, 10, 2, 11, 12, 13, 14, 3, 15, 16, 28, 18, 25 | hdmap1cl 40317 | . . 3 β’ (π β (πΌββ¨π, πΉ, πβ©) β π·) |
30 | hdmap1l6.a | . . . 4 β’ β = (+gβπΆ) | |
31 | hdmap1l6.q | . . . 4 β’ π = (0gβπΆ) | |
32 | 11, 30, 31 | grplid 18788 | . . 3 β’ ((πΆ β Grp β§ (πΌββ¨π, πΉ, πβ©) β π·) β (π β (πΌββ¨π, πΉ, πβ©)) = (πΌββ¨π, πΉ, πβ©)) |
33 | 6, 29, 32 | syl2anc 585 | . 2 β’ (π β (π β (πΌββ¨π, πΉ, πβ©)) = (πΌββ¨π, πΉ, πβ©)) |
34 | 20 | oteq3d 4848 | . . . . 5 β’ (π β β¨π, πΉ, πβ© = β¨π, πΉ, 0 β©) |
35 | 34 | fveq2d 6850 | . . . 4 β’ (π β (πΌββ¨π, πΉ, πβ©) = (πΌββ¨π, πΉ, 0 β©)) |
36 | 1, 7, 8, 9, 2, 11, 31, 14, 3, 15, 19 | hdmap1val0 40312 | . . . 4 β’ (π β (πΌββ¨π, πΉ, 0 β©) = π) |
37 | 35, 36 | eqtrd 2773 | . . 3 β’ (π β (πΌββ¨π, πΉ, πβ©) = π) |
38 | 37 | oveq1d 7376 | . 2 β’ (π β ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©)) = (π β (πΌββ¨π, πΉ, πβ©))) |
39 | 20 | oveq1d 7376 | . . . . 5 β’ (π β (π + π) = ( 0 + π)) |
40 | lmodgrp 20372 | . . . . . . 7 β’ (π β LMod β π β Grp) | |
41 | 21, 40 | syl 17 | . . . . . 6 β’ (π β π β Grp) |
42 | hdmap1l6.p | . . . . . . 7 β’ + = (+gβπ) | |
43 | 8, 42, 9 | grplid 18788 | . . . . . 6 β’ ((π β Grp β§ π β π) β ( 0 + π) = π) |
44 | 41, 25, 43 | syl2anc 585 | . . . . 5 β’ (π β ( 0 + π) = π) |
45 | 39, 44 | eqtrd 2773 | . . . 4 β’ (π β (π + π) = π) |
46 | 45 | oteq3d 4848 | . . 3 β’ (π β β¨π, πΉ, (π + π)β© = β¨π, πΉ, πβ©) |
47 | 46 | fveq2d 6850 | . 2 β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = (πΌββ¨π, πΉ, πβ©)) |
48 | 33, 38, 47 | 3eqtr4rd 2784 | 1 β’ (π β (πΌββ¨π, πΉ, (π + π)β©) = ((πΌββ¨π, πΉ, πβ©) β (πΌββ¨π, πΉ, πβ©))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2940 β cdif 3911 {csn 4590 {cpr 4592 β¨cotp 4598 βcfv 6500 (class class class)co 7361 Basecbs 17091 +gcplusg 17141 0gc0g 17329 Grpcgrp 18756 -gcsg 18758 LModclmod 20365 LSpanclspn 20476 HLchlt 37862 LHypclh 38497 DVecHcdvh 39591 LCDualclcd 40099 mapdcmpd 40137 HDMap1chdma1 40304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-riotaBAD 37465 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-ot 4599 df-uni 4870 df-int 4912 df-iun 4960 df-iin 4961 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-1st 7925 df-2nd 7926 df-tpos 8161 df-undef 8208 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-mulr 17155 df-sca 17157 df-vsca 17158 df-0g 17331 df-mre 17474 df-mrc 17475 df-acs 17477 df-proset 18192 df-poset 18210 df-plt 18227 df-lub 18243 df-glb 18244 df-join 18245 df-meet 18246 df-p0 18322 df-p1 18323 df-lat 18329 df-clat 18396 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-submnd 18610 df-grp 18759 df-minusg 18760 df-sbg 18761 df-subg 18933 df-cntz 19105 df-oppg 19132 df-lsm 19426 df-cmn 19572 df-abl 19573 df-mgp 19905 df-ur 19922 df-ring 19974 df-oppr 20057 df-dvdsr 20078 df-unit 20079 df-invr 20109 df-dvr 20120 df-drng 20221 df-lmod 20367 df-lss 20437 df-lsp 20477 df-lvec 20608 df-lsatoms 37488 df-lshyp 37489 df-lcv 37531 df-lfl 37570 df-lkr 37598 df-ldual 37636 df-oposet 37688 df-ol 37690 df-oml 37691 df-covers 37778 df-ats 37779 df-atl 37810 df-cvlat 37834 df-hlat 37863 df-llines 38011 df-lplanes 38012 df-lvols 38013 df-lines 38014 df-psubsp 38016 df-pmap 38017 df-padd 38309 df-lhyp 38501 df-laut 38502 df-ldil 38617 df-ltrn 38618 df-trl 38672 df-tgrp 39256 df-tendo 39268 df-edring 39270 df-dveca 39516 df-disoa 39542 df-dvech 39592 df-dib 39652 df-dic 39686 df-dih 39742 df-doch 39861 df-djh 39908 df-lcdual 40100 df-mapd 40138 df-hdmap1 40306 |
This theorem is referenced by: hdmap1l6k 40333 |
Copyright terms: Public domain | W3C validator |