Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6b Structured version   Visualization version   GIF version

Theorem hdmap1l6b 41768
Description: Lemmma for hdmap1l6 41778. (Contributed by NM, 24-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6b.y (𝜑𝑌 = 0 )
hdmap1l6b.z (𝜑𝑍𝑉)
hdmap1l6b.ne (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
hdmap1l6b (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))

Proof of Theorem hdmap1l6b
StepHypRef Expression
1 hdmap1l6.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmap1l6.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41549 . . . 4 (𝜑𝐶 ∈ LMod)
5 lmodgrp 20887 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐶 ∈ Grp)
7 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 hdmap1l6.v . . . 4 𝑉 = (Base‘𝑈)
9 hdmap1l6c.o . . . 4 0 = (0g𝑈)
10 hdmap1l6.n . . . 4 𝑁 = (LSpan‘𝑈)
11 hdmap1l6.d . . . 4 𝐷 = (Base‘𝐶)
12 hdmap1l6.l . . . 4 𝐿 = (LSpan‘𝐶)
13 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
14 hdmap1l6.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
15 hdmap1l6.f . . . 4 (𝜑𝐹𝐷)
16 hdmap1l6.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
171, 7, 3dvhlvec 41066 . . . . . 6 (𝜑𝑈 ∈ LVec)
18 hdmap1l6cl.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1918eldifad 3988 . . . . . 6 (𝜑𝑋𝑉)
20 hdmap1l6b.y . . . . . . 7 (𝜑𝑌 = 0 )
211, 7, 3dvhlmod 41067 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
228, 9lmod0vcl 20911 . . . . . . . 8 (𝑈 ∈ LMod → 0𝑉)
2321, 22syl 17 . . . . . . 7 (𝜑0𝑉)
2420, 23eqeltrd 2844 . . . . . 6 (𝜑𝑌𝑉)
25 hdmap1l6b.z . . . . . 6 (𝜑𝑍𝑉)
26 hdmap1l6b.ne . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
278, 10, 17, 19, 24, 25, 26lspindpi 21157 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2827simprd 495 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
291, 7, 8, 9, 10, 2, 11, 12, 13, 14, 3, 15, 16, 28, 18, 25hdmap1cl 41761 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
30 hdmap1l6.a . . . 4 = (+g𝐶)
31 hdmap1l6.q . . . 4 𝑄 = (0g𝐶)
3211, 30, 31grplid 19007 . . 3 ((𝐶 ∈ Grp ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷) → (𝑄 (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
336, 29, 32syl2anc 583 . 2 (𝜑 → (𝑄 (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
3420oteq3d 4911 . . . . 5 (𝜑 → ⟨𝑋, 𝐹, 𝑌⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3534fveq2d 6924 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
361, 7, 8, 9, 2, 11, 31, 14, 3, 15, 19hdmap1val0 41756 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3735, 36eqtrd 2780 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝑄)
3837oveq1d 7463 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝑄 (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
3920oveq1d 7463 . . . . 5 (𝜑 → (𝑌 + 𝑍) = ( 0 + 𝑍))
40 lmodgrp 20887 . . . . . . 7 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
4121, 40syl 17 . . . . . 6 (𝜑𝑈 ∈ Grp)
42 hdmap1l6.p . . . . . . 7 + = (+g𝑈)
438, 42, 9grplid 19007 . . . . . 6 ((𝑈 ∈ Grp ∧ 𝑍𝑉) → ( 0 + 𝑍) = 𝑍)
4441, 25, 43syl2anc 583 . . . . 5 (𝜑 → ( 0 + 𝑍) = 𝑍)
4539, 44eqtrd 2780 . . . 4 (𝜑 → (𝑌 + 𝑍) = 𝑍)
4645oteq3d 4911 . . 3 (𝜑 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 𝑍⟩)
4746fveq2d 6924 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
4833, 38, 473eqtr4rd 2791 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {csn 4648  {cpr 4650  cotp 4656  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  -gcsg 18975  LModclmod 20880  LSpanclspn 20992  HLchlt 39306  LHypclh 39941  DVecHcdvh 41035  LCDualclcd 41543  mapdcmpd 41581  HDMap1chdma1 41748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-nzr 20539  df-rlreg 20716  df-domn 20717  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932  df-lshyp 38933  df-lcv 38975  df-lfl 39014  df-lkr 39042  df-ldual 39080  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tgrp 40700  df-tendo 40712  df-edring 40714  df-dveca 40960  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186  df-doch 41305  df-djh 41352  df-lcdual 41544  df-mapd 41582  df-hdmap1 41750
This theorem is referenced by:  hdmap1l6k  41777
  Copyright terms: Public domain W3C validator