| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwlid | Structured version Visualization version GIF version | ||
| Description: Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwlid.h | ⊢ 𝐻 = (Homa‘𝐶) |
| arwlid.o | ⊢ · = (compa‘𝐶) |
| arwlid.a | ⊢ 1 = (Ida‘𝐶) |
| arwlid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| arwlid | ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwlid.a | . . . . . 6 ⊢ 1 = (Ida‘𝐶) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | arwlid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | arwlid.h | . . . . . . . 8 ⊢ 𝐻 = (Homa‘𝐶) | |
| 5 | 4 | homarcl 17997 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2730 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | 4, 2 | homarcl2 18004 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 10 | 9 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 11 | 1, 2, 6, 7, 10 | ida2 18028 | . . . . 5 ⊢ (𝜑 → (2nd ‘( 1 ‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
| 12 | 11 | oveq1d 7405 | . . . 4 ⊢ (𝜑 → ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))) |
| 13 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | 9 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 15 | eqid 2730 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 16 | 4, 13 | homahom 18008 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 18 | 2, 13, 7, 6, 14, 15, 10, 17 | catlid 17651 | . . . 4 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (2nd ‘𝐹)) |
| 19 | 12, 18 | eqtrd 2765 | . . 3 ⊢ (𝜑 → ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (2nd ‘𝐹)) |
| 20 | 19 | oteq3d 4854 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌, ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))〉 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 21 | arwlid.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 22 | 1, 2, 6, 10, 4 | idahom 18029 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑌) ∈ (𝑌𝐻𝑌)) |
| 23 | 21, 4, 3, 22, 15 | coaval 18037 | . 2 ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 〈𝑋, 𝑌, ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))〉) |
| 24 | 4 | homadmcd 18011 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 25 | 3, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 26 | 20, 23, 25 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 〈cotp 4600 ‘cfv 6514 (class class class)co 7390 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Idccid 17633 Homachoma 17992 Idacida 18022 compaccoa 18023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-cat 17636 df-cid 17637 df-doma 17993 df-coda 17994 df-homa 17995 df-arw 17996 df-ida 18024 df-coa 18025 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |