MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwlid Structured version   Visualization version   GIF version

Theorem arwlid 18139
Description: Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
arwlid (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)

Proof of Theorem arwlid
StepHypRef Expression
1 arwlid.a . . . . . 6 1 = (Ida𝐶)
2 eqid 2740 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 arwlid.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 arwlid.h . . . . . . . 8 𝐻 = (Homa𝐶)
54homarcl 18095 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
63, 5syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
7 eqid 2740 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
84, 2homarcl2 18102 . . . . . . . 8 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
93, 8syl 17 . . . . . . 7 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simprd 495 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
111, 2, 6, 7, 10ida2 18126 . . . . 5 (𝜑 → (2nd ‘( 1𝑌)) = ((Id‘𝐶)‘𝑌))
1211oveq1d 7463 . . . 4 (𝜑 → ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)))
13 eqid 2740 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
149simpld 494 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
15 eqid 2740 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
164, 13homahom 18106 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
173, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
182, 13, 7, 6, 14, 15, 10, 17catlid 17741 . . . 4 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (2nd𝐹))
1912, 18eqtrd 2780 . . 3 (𝜑 → ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (2nd𝐹))
2019oteq3d 4911 . 2 (𝜑 → ⟨𝑋, 𝑌, ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹))⟩ = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
21 arwlid.o . . 3 · = (compa𝐶)
221, 2, 6, 10, 4idahom 18127 . . 3 (𝜑 → ( 1𝑌) ∈ (𝑌𝐻𝑌))
2321, 4, 3, 22, 15coaval 18135 . 2 (𝜑 → (( 1𝑌) · 𝐹) = ⟨𝑋, 𝑌, ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹))⟩)
244homadmcd 18109 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
253, 24syl 17 . 2 (𝜑𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
2620, 23, 253eqtr4d 2790 1 (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cop 4654  cotp 4656  cfv 6573  (class class class)co 7448  2nd c2nd 8029  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Homachoma 18090  Idacida 18120  compaccoa 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-cat 17726  df-cid 17727  df-doma 18091  df-coda 18092  df-homa 18093  df-arw 18094  df-ida 18122  df-coa 18123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator