| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwlid | Structured version Visualization version GIF version | ||
| Description: Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwlid.h | ⊢ 𝐻 = (Homa‘𝐶) |
| arwlid.o | ⊢ · = (compa‘𝐶) |
| arwlid.a | ⊢ 1 = (Ida‘𝐶) |
| arwlid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| arwlid | ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwlid.a | . . . . . 6 ⊢ 1 = (Ida‘𝐶) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | arwlid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | arwlid.h | . . . . . . . 8 ⊢ 𝐻 = (Homa‘𝐶) | |
| 5 | 4 | homarcl 17935 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2731 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | 4, 2 | homarcl2 17942 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 10 | 9 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 11 | 1, 2, 6, 7, 10 | ida2 17966 | . . . . 5 ⊢ (𝜑 → (2nd ‘( 1 ‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
| 12 | 11 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))) |
| 13 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | 9 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 15 | eqid 2731 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 16 | 4, 13 | homahom 17946 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 18 | 2, 13, 7, 6, 14, 15, 10, 17 | catlid 17589 | . . . 4 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (2nd ‘𝐹)) |
| 19 | 12, 18 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (2nd ‘𝐹)) |
| 20 | 19 | oteq3d 4836 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌, ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))〉 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 21 | arwlid.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 22 | 1, 2, 6, 10, 4 | idahom 17967 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑌) ∈ (𝑌𝐻𝑌)) |
| 23 | 21, 4, 3, 22, 15 | coaval 17975 | . 2 ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 〈𝑋, 𝑌, ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))〉) |
| 24 | 4 | homadmcd 17949 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 25 | 3, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 26 | 20, 23, 25 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 〈cotp 4581 ‘cfv 6481 (class class class)co 7346 2nd c2nd 7920 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Homachoma 17930 Idacida 17960 compaccoa 17961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-cat 17574 df-cid 17575 df-doma 17931 df-coda 17932 df-homa 17933 df-arw 17934 df-ida 17962 df-coa 17963 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |