MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwlid Structured version   Visualization version   GIF version

Theorem arwlid 18090
Description: Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
arwlid (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)

Proof of Theorem arwlid
StepHypRef Expression
1 arwlid.a . . . . . 6 1 = (Ida𝐶)
2 eqid 2736 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 arwlid.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 arwlid.h . . . . . . . 8 𝐻 = (Homa𝐶)
54homarcl 18046 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
63, 5syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
7 eqid 2736 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
84, 2homarcl2 18053 . . . . . . . 8 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
93, 8syl 17 . . . . . . 7 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simprd 495 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
111, 2, 6, 7, 10ida2 18077 . . . . 5 (𝜑 → (2nd ‘( 1𝑌)) = ((Id‘𝐶)‘𝑌))
1211oveq1d 7425 . . . 4 (𝜑 → ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)))
13 eqid 2736 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
149simpld 494 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
15 eqid 2736 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
164, 13homahom 18057 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
173, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
182, 13, 7, 6, 14, 15, 10, 17catlid 17700 . . . 4 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (2nd𝐹))
1912, 18eqtrd 2771 . . 3 (𝜑 → ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (2nd𝐹))
2019oteq3d 4868 . 2 (𝜑 → ⟨𝑋, 𝑌, ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹))⟩ = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
21 arwlid.o . . 3 · = (compa𝐶)
221, 2, 6, 10, 4idahom 18078 . . 3 (𝜑 → ( 1𝑌) ∈ (𝑌𝐻𝑌))
2321, 4, 3, 22, 15coaval 18086 . 2 (𝜑 → (( 1𝑌) · 𝐹) = ⟨𝑋, 𝑌, ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹))⟩)
244homadmcd 18060 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
253, 24syl 17 . 2 (𝜑𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
2620, 23, 253eqtr4d 2781 1 (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4612  cotp 4614  cfv 6536  (class class class)co 7410  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  compcco 17288  Catccat 17681  Idccid 17682  Homachoma 18041  Idacida 18071  compaccoa 18072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-cat 17685  df-cid 17686  df-doma 18042  df-coda 18043  df-homa 18044  df-arw 18045  df-ida 18073  df-coa 18074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator