| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwlid | Structured version Visualization version GIF version | ||
| Description: Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwlid.h | ⊢ 𝐻 = (Homa‘𝐶) |
| arwlid.o | ⊢ · = (compa‘𝐶) |
| arwlid.a | ⊢ 1 = (Ida‘𝐶) |
| arwlid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| arwlid | ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwlid.a | . . . . . 6 ⊢ 1 = (Ida‘𝐶) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | arwlid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | arwlid.h | . . . . . . . 8 ⊢ 𝐻 = (Homa‘𝐶) | |
| 5 | 4 | homarcl 17970 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | 4, 2 | homarcl2 17977 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 10 | 9 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 11 | 1, 2, 6, 7, 10 | ida2 18001 | . . . . 5 ⊢ (𝜑 → (2nd ‘( 1 ‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
| 12 | 11 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))) |
| 13 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | 9 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 15 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 16 | 4, 13 | homahom 17981 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 18 | 2, 13, 7, 6, 14, 15, 10, 17 | catlid 17624 | . . . 4 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (2nd ‘𝐹)) |
| 19 | 12, 18 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (2nd ‘𝐹)) |
| 20 | 19 | oteq3d 4847 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌, ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))〉 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 21 | arwlid.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 22 | 1, 2, 6, 10, 4 | idahom 18002 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑌) ∈ (𝑌𝐻𝑌)) |
| 23 | 21, 4, 3, 22, 15 | coaval 18010 | . 2 ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 〈𝑋, 𝑌, ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))〉) |
| 24 | 4 | homadmcd 17984 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 25 | 3, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 26 | 20, 23, 25 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 〈cotp 4593 ‘cfv 6499 (class class class)co 7369 2nd c2nd 7946 Basecbs 17155 Hom chom 17207 compcco 17208 Catccat 17605 Idccid 17606 Homachoma 17965 Idacida 17995 compaccoa 17996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-cat 17609 df-cid 17610 df-doma 17966 df-coda 17967 df-homa 17968 df-arw 17969 df-ida 17997 df-coa 17998 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |