MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwlid Structured version   Visualization version   GIF version

Theorem arwlid 18014
Description: Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwlid.h 𝐻 = (Homa𝐶)
arwlid.o · = (compa𝐶)
arwlid.a 1 = (Ida𝐶)
arwlid.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
arwlid (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)

Proof of Theorem arwlid
StepHypRef Expression
1 arwlid.a . . . . . 6 1 = (Ida𝐶)
2 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 arwlid.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 arwlid.h . . . . . . . 8 𝐻 = (Homa𝐶)
54homarcl 17970 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
63, 5syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
7 eqid 2729 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
84, 2homarcl2 17977 . . . . . . . 8 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
93, 8syl 17 . . . . . . 7 (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
109simprd 495 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
111, 2, 6, 7, 10ida2 18001 . . . . 5 (𝜑 → (2nd ‘( 1𝑌)) = ((Id‘𝐶)‘𝑌))
1211oveq1d 7384 . . . 4 (𝜑 → ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)))
13 eqid 2729 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
149simpld 494 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
15 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
164, 13homahom 17981 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
173, 16syl 17 . . . . 5 (𝜑 → (2nd𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌))
182, 13, 7, 6, 14, 15, 10, 17catlid 17624 . . . 4 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (2nd𝐹))
1912, 18eqtrd 2764 . . 3 (𝜑 → ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹)) = (2nd𝐹))
2019oteq3d 4847 . 2 (𝜑 → ⟨𝑋, 𝑌, ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹))⟩ = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
21 arwlid.o . . 3 · = (compa𝐶)
221, 2, 6, 10, 4idahom 18002 . . 3 (𝜑 → ( 1𝑌) ∈ (𝑌𝐻𝑌))
2321, 4, 3, 22, 15coaval 18010 . 2 (𝜑 → (( 1𝑌) · 𝐹) = ⟨𝑋, 𝑌, ((2nd ‘( 1𝑌))(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)(2nd𝐹))⟩)
244homadmcd 17984 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
253, 24syl 17 . 2 (𝜑𝐹 = ⟨𝑋, 𝑌, (2nd𝐹)⟩)
2620, 23, 253eqtr4d 2774 1 (𝜑 → (( 1𝑌) · 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4591  cotp 4593  cfv 6499  (class class class)co 7369  2nd c2nd 7946  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17605  Idccid 17606  Homachoma 17965  Idacida 17995  compaccoa 17996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-cat 17609  df-cid 17610  df-doma 17966  df-coda 17967  df-homa 17968  df-arw 17969  df-ida 17997  df-coa 17998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator