| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arwlid | Structured version Visualization version GIF version | ||
| Description: Left identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwlid.h | ⊢ 𝐻 = (Homa‘𝐶) |
| arwlid.o | ⊢ · = (compa‘𝐶) |
| arwlid.a | ⊢ 1 = (Ida‘𝐶) |
| arwlid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| arwlid | ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwlid.a | . . . . . 6 ⊢ 1 = (Ida‘𝐶) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | arwlid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | arwlid.h | . . . . . . . 8 ⊢ 𝐻 = (Homa‘𝐶) | |
| 5 | 4 | homarcl 17935 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 8 | 4, 2 | homarcl2 17942 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 10 | 9 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 11 | 1, 2, 6, 7, 10 | ida2 17966 | . . . . 5 ⊢ (𝜑 → (2nd ‘( 1 ‘𝑌)) = ((Id‘𝐶)‘𝑌)) |
| 12 | 11 | oveq1d 7364 | . . . 4 ⊢ (𝜑 → ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))) |
| 13 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | 9 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 15 | eqid 2729 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 16 | 4, 13 | homahom 17946 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
| 18 | 2, 13, 7, 6, 14, 15, 10, 17 | catlid 17589 | . . . 4 ⊢ (𝜑 → (((Id‘𝐶)‘𝑌)(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (2nd ‘𝐹)) |
| 19 | 12, 18 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹)) = (2nd ‘𝐹)) |
| 20 | 19 | oteq3d 4838 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌, ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))〉 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 21 | arwlid.o | . . 3 ⊢ · = (compa‘𝐶) | |
| 22 | 1, 2, 6, 10, 4 | idahom 17967 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑌) ∈ (𝑌𝐻𝑌)) |
| 23 | 21, 4, 3, 22, 15 | coaval 17975 | . 2 ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 〈𝑋, 𝑌, ((2nd ‘( 1 ‘𝑌))(〈𝑋, 𝑌〉(comp‘𝐶)𝑌)(2nd ‘𝐹))〉) |
| 24 | 4 | homadmcd 17949 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 25 | 3, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
| 26 | 20, 23, 25 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (( 1 ‘𝑌) · 𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 〈cotp 4585 ‘cfv 6482 (class class class)co 7349 2nd c2nd 7923 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Homachoma 17930 Idacida 17960 compaccoa 17961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-cat 17574 df-cid 17575 df-doma 17931 df-coda 17932 df-homa 17933 df-arw 17934 df-ida 17962 df-coa 17963 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |