Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6cN Structured version   Visualization version   GIF version

Theorem mapdh6cN 41847
Description: Lemmma for mapdh6N 41856. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6c.y (𝜑𝑌𝑉)
mapdh6c.z (𝜑𝑍 = 0 )
mapdh6c.ne (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
mapdh6cN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   + (𝑥,)   (𝑥,)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh6cN
StepHypRef Expression
1 mapdh.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 mapdh.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdh.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41701 . . . 4 (𝜑𝐶 ∈ LMod)
5 lmodgrp 20800 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐶 ∈ Grp)
7 mapdh.q . . . 4 𝑄 = (0g𝐶)
8 mapdh.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
9 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
10 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 mapdh.v . . . 4 𝑉 = (Base‘𝑈)
12 mapdh.s . . . 4 = (-g𝑈)
13 mapdhc.o . . . 4 0 = (0g𝑈)
14 mapdh.n . . . 4 𝑁 = (LSpan‘𝑈)
15 mapdh.d . . . 4 𝐷 = (Base‘𝐶)
16 mapdh.r . . . 4 𝑅 = (-g𝐶)
17 mapdh.j . . . 4 𝐽 = (LSpan‘𝐶)
18 mapdhc.f . . . 4 (𝜑𝐹𝐷)
19 mapdh.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21 mapdh6c.y . . . 4 (𝜑𝑌𝑉)
221, 10, 3dvhlvec 41218 . . . . . 6 (𝜑𝑈 ∈ LVec)
2320eldifad 3909 . . . . . 6 (𝜑𝑋𝑉)
24 mapdh6c.z . . . . . . 7 (𝜑𝑍 = 0 )
251, 10, 3dvhlmod 41219 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
2611, 13lmod0vcl 20824 . . . . . . . 8 (𝑈 ∈ LMod → 0𝑉)
2725, 26syl 17 . . . . . . 7 (𝜑0𝑉)
2824, 27eqeltrd 2831 . . . . . 6 (𝜑𝑍𝑉)
29 mapdh6c.ne . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
3011, 14, 22, 23, 21, 28, 29lspindpi 21069 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
3130simpld 494 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
327, 8, 1, 9, 10, 11, 12, 13, 14, 2, 15, 16, 17, 3, 18, 19, 20, 21, 31mapdhcl 41836 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
33 mapdh.a . . . 4 = (+g𝐶)
3415, 33, 7grprid 18881 . . 3 ((𝐶 ∈ Grp ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
356, 32, 34syl2anc 584 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
3624oteq3d 4836 . . . . 5 (𝜑 → ⟨𝑋, 𝐹, 𝑍⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3736fveq2d 6826 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
387, 8, 13, 20, 18mapdhval0 41834 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3937, 38eqtrd 2766 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝑄)
4039oveq2d 7362 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) 𝑄))
4124oveq2d 7362 . . . . 5 (𝜑 → (𝑌 + 𝑍) = (𝑌 + 0 ))
42 lmodgrp 20800 . . . . . . 7 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
4325, 42syl 17 . . . . . 6 (𝜑𝑈 ∈ Grp)
44 mapdh.p . . . . . . 7 + = (+g𝑈)
4511, 44, 13grprid 18881 . . . . . 6 ((𝑈 ∈ Grp ∧ 𝑌𝑉) → (𝑌 + 0 ) = 𝑌)
4643, 21, 45syl2anc 584 . . . . 5 (𝜑 → (𝑌 + 0 ) = 𝑌)
4741, 46eqtrd 2766 . . . 4 (𝜑 → (𝑌 + 𝑍) = 𝑌)
4847oteq3d 4836 . . 3 (𝜑 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 𝑌⟩)
4948fveq2d 6826 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
5035, 40, 493eqtr4rd 2777 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  ifcif 4472  {csn 4573  {cpr 4575  cotp 4581  cmpt 5170  cfv 6481  crio 7302  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  -gcsg 18848  LModclmod 20793  LSpanclspn 20904  HLchlt 39459  LHypclh 40093  DVecHcdvh 41187  LCDualclcd 41695  mapdcmpd 41733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-oppg 19258  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-nzr 20428  df-rlreg 20609  df-domn 20610  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-lsatoms 39085  df-lshyp 39086  df-lcv 39128  df-lfl 39167  df-lkr 39195  df-ldual 39233  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tgrp 40852  df-tendo 40864  df-edring 40866  df-dveca 41112  df-disoa 41138  df-dvech 41188  df-dib 41248  df-dic 41282  df-dih 41338  df-doch 41457  df-djh 41504  df-lcdual 41696  df-mapd 41734
This theorem is referenced by:  mapdh6kN  41855
  Copyright terms: Public domain W3C validator