Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6cN | Structured version Visualization version GIF version |
Description: Lemmma for mapdh6N 39688. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh.p | ⊢ + = (+g‘𝑈) |
mapdh.a | ⊢ ✚ = (+g‘𝐶) |
mapdh6c.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdh6c.z | ⊢ (𝜑 → 𝑍 = 0 ) |
mapdh6c.ne | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
Ref | Expression |
---|---|
mapdh6cN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | mapdh.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 39533 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | lmodgrp 20045 | . . . 4 ⊢ (𝐶 ∈ LMod → 𝐶 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Grp) |
7 | mapdh.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
8 | mapdh.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
9 | mapdh.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
10 | mapdh.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
11 | mapdh.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
12 | mapdh.s | . . . 4 ⊢ − = (-g‘𝑈) | |
13 | mapdhc.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
14 | mapdh.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
15 | mapdh.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
16 | mapdh.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
17 | mapdh.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
18 | mapdhc.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
19 | mapdh.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
20 | mapdhcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
21 | mapdh6c.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
22 | 1, 10, 3 | dvhlvec 39050 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
23 | 20 | eldifad 3895 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
24 | mapdh6c.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 = 0 ) | |
25 | 1, 10, 3 | dvhlmod 39051 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
26 | 11, 13 | lmod0vcl 20067 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
27 | 25, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑉) |
28 | 24, 27 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
29 | mapdh6c.ne | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
30 | 11, 14, 22, 23, 21, 28, 29 | lspindpi 20309 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
31 | 30 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
32 | 7, 8, 1, 9, 10, 11, 12, 13, 14, 2, 15, 16, 17, 3, 18, 19, 20, 21, 31 | mapdhcl 39668 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
33 | mapdh.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
34 | 15, 33, 7 | grprid 18525 | . . 3 ⊢ ((𝐶 ∈ Grp ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
35 | 6, 32, 34 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
36 | 24 | oteq3d 4815 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝐹, 𝑍〉 = 〈𝑋, 𝐹, 0 〉) |
37 | 36 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
38 | 7, 8, 13, 20, 18 | mapdhval0 39666 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
39 | 37, 38 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝑄) |
40 | 39 | oveq2d 7271 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄)) |
41 | 24 | oveq2d 7271 | . . . . 5 ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑌 + 0 )) |
42 | lmodgrp 20045 | . . . . . . 7 ⊢ (𝑈 ∈ LMod → 𝑈 ∈ Grp) | |
43 | 25, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Grp) |
44 | mapdh.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
45 | 11, 44, 13 | grprid 18525 | . . . . . 6 ⊢ ((𝑈 ∈ Grp ∧ 𝑌 ∈ 𝑉) → (𝑌 + 0 ) = 𝑌) |
46 | 43, 21, 45 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑌 + 0 ) = 𝑌) |
47 | 41, 46 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) = 𝑌) |
48 | 47 | oteq3d 4815 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝐹, (𝑌 + 𝑍)〉 = 〈𝑋, 𝐹, 𝑌〉) |
49 | 48 | fveq2d 6760 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
50 | 35, 40, 49 | 3eqtr4rd 2789 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∖ cdif 3880 ifcif 4456 {csn 4558 {cpr 4560 〈cotp 4566 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Grpcgrp 18492 -gcsg 18494 LModclmod 20038 LSpanclspn 20148 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 |
This theorem is referenced by: mapdh6kN 39687 |
Copyright terms: Public domain | W3C validator |