Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6cN Structured version   Visualization version   GIF version

Theorem mapdh6cN 38993
Description: Lemmma for mapdh6N 39002. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6c.y (𝜑𝑌𝑉)
mapdh6c.z (𝜑𝑍 = 0 )
mapdh6c.ne (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
mapdh6cN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   + (𝑥,)   (𝑥,)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh6cN
StepHypRef Expression
1 mapdh.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 mapdh.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 mapdh.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 38847 . . . 4 (𝜑𝐶 ∈ LMod)
5 lmodgrp 19632 . . . 4 (𝐶 ∈ LMod → 𝐶 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐶 ∈ Grp)
7 mapdh.q . . . 4 𝑄 = (0g𝐶)
8 mapdh.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
9 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
10 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 mapdh.v . . . 4 𝑉 = (Base‘𝑈)
12 mapdh.s . . . 4 = (-g𝑈)
13 mapdhc.o . . . 4 0 = (0g𝑈)
14 mapdh.n . . . 4 𝑁 = (LSpan‘𝑈)
15 mapdh.d . . . 4 𝐷 = (Base‘𝐶)
16 mapdh.r . . . 4 𝑅 = (-g𝐶)
17 mapdh.j . . . 4 𝐽 = (LSpan‘𝐶)
18 mapdhc.f . . . 4 (𝜑𝐹𝐷)
19 mapdh.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21 mapdh6c.y . . . 4 (𝜑𝑌𝑉)
221, 10, 3dvhlvec 38364 . . . . . 6 (𝜑𝑈 ∈ LVec)
2320eldifad 3920 . . . . . 6 (𝜑𝑋𝑉)
24 mapdh6c.z . . . . . . 7 (𝜑𝑍 = 0 )
251, 10, 3dvhlmod 38365 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
2611, 13lmod0vcl 19654 . . . . . . . 8 (𝑈 ∈ LMod → 0𝑉)
2725, 26syl 17 . . . . . . 7 (𝜑0𝑉)
2824, 27eqeltrd 2914 . . . . . 6 (𝜑𝑍𝑉)
29 mapdh6c.ne . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
3011, 14, 22, 23, 21, 28, 29lspindpi 19895 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
3130simpld 498 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
327, 8, 1, 9, 10, 11, 12, 13, 14, 2, 15, 16, 17, 3, 18, 19, 20, 21, 31mapdhcl 38982 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
33 mapdh.a . . . 4 = (+g𝐶)
3415, 33, 7grprid 18125 . . 3 ((𝐶 ∈ Grp ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
356, 32, 34syl2anc 587 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) 𝑄) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
3624oteq3d 4792 . . . . 5 (𝜑 → ⟨𝑋, 𝐹, 𝑍⟩ = ⟨𝑋, 𝐹, 0 ⟩)
3736fveq2d 6656 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = (𝐼‘⟨𝑋, 𝐹, 0 ⟩))
387, 8, 13, 20, 18mapdhval0 38980 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 0 ⟩) = 𝑄)
3937, 38eqtrd 2857 . . 3 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝑄)
4039oveq2d 7156 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) 𝑄))
4124oveq2d 7156 . . . . 5 (𝜑 → (𝑌 + 𝑍) = (𝑌 + 0 ))
42 lmodgrp 19632 . . . . . . 7 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
4325, 42syl 17 . . . . . 6 (𝜑𝑈 ∈ Grp)
44 mapdh.p . . . . . . 7 + = (+g𝑈)
4511, 44, 13grprid 18125 . . . . . 6 ((𝑈 ∈ Grp ∧ 𝑌𝑉) → (𝑌 + 0 ) = 𝑌)
4643, 21, 45syl2anc 587 . . . . 5 (𝜑 → (𝑌 + 0 ) = 𝑌)
4741, 46eqtrd 2857 . . . 4 (𝜑 → (𝑌 + 𝑍) = 𝑌)
4847oteq3d 4792 . . 3 (𝜑 → ⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩ = ⟨𝑋, 𝐹, 𝑌⟩)
4948fveq2d 6656 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
5035, 40, 493eqtr4rd 2868 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2114  wne 3011  Vcvv 3469  cdif 3905  ifcif 4439  {csn 4539  {cpr 4541  cotp 4547  cmpt 5122  cfv 6334  crio 7097  (class class class)co 7140  1st c1st 7673  2nd c2nd 7674  Basecbs 16474  +gcplusg 16556  0gc0g 16704  Grpcgrp 18094  -gcsg 18096  LModclmod 19625  LSpanclspn 19734  HLchlt 36605  LHypclh 37239  DVecHcdvh 38333  LCDualclcd 38841  mapdcmpd 38879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36208
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-ot 4548  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-tpos 7879  df-undef 7926  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-0g 16706  df-mre 16848  df-mrc 16849  df-acs 16851  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-p1 17641  df-lat 17647  df-clat 17709  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-cntz 18438  df-oppg 18465  df-lsm 18752  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19495  df-lmod 19627  df-lss 19695  df-lsp 19735  df-lvec 19866  df-lsatoms 36231  df-lshyp 36232  df-lcv 36274  df-lfl 36313  df-lkr 36341  df-ldual 36379  df-oposet 36431  df-ol 36433  df-oml 36434  df-covers 36521  df-ats 36522  df-atl 36553  df-cvlat 36577  df-hlat 36606  df-llines 36753  df-lplanes 36754  df-lvols 36755  df-lines 36756  df-psubsp 36758  df-pmap 36759  df-padd 37051  df-lhyp 37243  df-laut 37244  df-ldil 37359  df-ltrn 37360  df-trl 37414  df-tgrp 37998  df-tendo 38010  df-edring 38012  df-dveca 38258  df-disoa 38284  df-dvech 38334  df-dib 38394  df-dic 38428  df-dih 38484  df-doch 38603  df-djh 38650  df-lcdual 38842  df-mapd 38880
This theorem is referenced by:  mapdh6kN  39001
  Copyright terms: Public domain W3C validator