| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6c | Structured version Visualization version GIF version | ||
| Description: Lemmma for hdmap1l6 41800. (Contributed by NM, 24-Apr-2015.) |
| Ref | Expression |
|---|---|
| hdmap1l6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1l6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1l6.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1l6.p | ⊢ + = (+g‘𝑈) |
| hdmap1l6.s | ⊢ − = (-g‘𝑈) |
| hdmap1l6c.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1l6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1l6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1l6.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1l6.a | ⊢ ✚ = (+g‘𝐶) |
| hdmap1l6.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1l6.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1l6.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmap1l6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1l6.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1l6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1l6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1l6cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap1l6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
| hdmap1l6c.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| hdmap1l6c.z | ⊢ (𝜑 → 𝑍 = 0 ) |
| hdmap1l6c.ne | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| Ref | Expression |
|---|---|
| hdmap1l6c | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1l6.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1l6.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 3 | hdmap1l6.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | 1, 2, 3 | lcdlmod 41571 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 5 | lmodgrp 20788 | . . . 4 ⊢ (𝐶 ∈ LMod → 𝐶 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Grp) |
| 7 | hdmap1l6.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 8 | hdmap1l6.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 9 | hdmap1l6c.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 10 | hdmap1l6.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 11 | hdmap1l6.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
| 12 | hdmap1l6.l | . . . 4 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 13 | hdmap1l6.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 14 | hdmap1l6.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 15 | hdmap1l6.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | hdmap1l6.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
| 17 | 1, 7, 3 | dvhlvec 41088 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 18 | hdmap1l6cl.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 19 | 18 | eldifad 3917 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 20 | hdmap1l6c.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 21 | hdmap1l6c.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 = 0 ) | |
| 22 | 1, 7, 3 | dvhlmod 41089 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 23 | 8, 9 | lmod0vcl 20812 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
| 24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑉) |
| 25 | 21, 24 | eqeltrd 2828 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 26 | hdmap1l6c.ne | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 27 | 8, 10, 17, 19, 20, 25, 26 | lspindpi 21057 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| 28 | 27 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 29 | 1, 7, 8, 9, 10, 2, 11, 12, 13, 14, 3, 15, 16, 28, 18, 20 | hdmap1cl 41783 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
| 30 | hdmap1l6.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
| 31 | hdmap1l6.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
| 32 | 11, 30, 31 | grprid 18865 | . . 3 ⊢ ((𝐶 ∈ Grp ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
| 33 | 6, 29, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
| 34 | 21 | oteq3d 4841 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝐹, 𝑍〉 = 〈𝑋, 𝐹, 0 〉) |
| 35 | 34 | fveq2d 6830 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
| 36 | 1, 7, 8, 9, 2, 11, 31, 14, 3, 15, 19 | hdmap1val0 41778 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| 37 | 35, 36 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝑄) |
| 38 | 37 | oveq2d 7369 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄)) |
| 39 | 21 | oveq2d 7369 | . . . . 5 ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑌 + 0 )) |
| 40 | lmodgrp 20788 | . . . . . . 7 ⊢ (𝑈 ∈ LMod → 𝑈 ∈ Grp) | |
| 41 | 22, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Grp) |
| 42 | hdmap1l6.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
| 43 | 8, 42, 9 | grprid 18865 | . . . . . 6 ⊢ ((𝑈 ∈ Grp ∧ 𝑌 ∈ 𝑉) → (𝑌 + 0 ) = 𝑌) |
| 44 | 41, 20, 43 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌 + 0 ) = 𝑌) |
| 45 | 39, 44 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) = 𝑌) |
| 46 | 45 | oteq3d 4841 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝐹, (𝑌 + 𝑍)〉 = 〈𝑋, 𝐹, 𝑌〉) |
| 47 | 46 | fveq2d 6830 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
| 48 | 33, 38, 47 | 3eqtr4rd 2775 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 {csn 4579 {cpr 4581 〈cotp 4587 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Grpcgrp 18830 -gcsg 18832 LModclmod 20781 LSpanclspn 20892 HLchlt 39328 LHypclh 39963 DVecHcdvh 41057 LCDualclcd 41565 mapdcmpd 41603 HDMap1chdma1 41770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38931 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17363 df-mre 17506 df-mrc 17507 df-acs 17509 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-nzr 20416 df-rlreg 20597 df-domn 20598 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-lsatoms 38954 df-lshyp 38955 df-lcv 38997 df-lfl 39036 df-lkr 39064 df-ldual 39102 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tgrp 40722 df-tendo 40734 df-edring 40736 df-dveca 40982 df-disoa 41008 df-dvech 41058 df-dib 41118 df-dic 41152 df-dih 41208 df-doch 41327 df-djh 41374 df-lcdual 41566 df-mapd 41604 df-hdmap1 41772 |
| This theorem is referenced by: hdmap1l6k 41799 |
| Copyright terms: Public domain | W3C validator |