| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6c | Structured version Visualization version GIF version | ||
| Description: Lemmma for hdmap1l6 41859. (Contributed by NM, 24-Apr-2015.) |
| Ref | Expression |
|---|---|
| hdmap1l6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1l6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1l6.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1l6.p | ⊢ + = (+g‘𝑈) |
| hdmap1l6.s | ⊢ − = (-g‘𝑈) |
| hdmap1l6c.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1l6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1l6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1l6.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1l6.a | ⊢ ✚ = (+g‘𝐶) |
| hdmap1l6.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1l6.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1l6.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmap1l6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1l6.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1l6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1l6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1l6cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap1l6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
| hdmap1l6c.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| hdmap1l6c.z | ⊢ (𝜑 → 𝑍 = 0 ) |
| hdmap1l6c.ne | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| Ref | Expression |
|---|---|
| hdmap1l6c | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1l6.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1l6.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 3 | hdmap1l6.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | 1, 2, 3 | lcdlmod 41630 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 5 | lmodgrp 20798 | . . . 4 ⊢ (𝐶 ∈ LMod → 𝐶 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Grp) |
| 7 | hdmap1l6.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 8 | hdmap1l6.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 9 | hdmap1l6c.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 10 | hdmap1l6.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 11 | hdmap1l6.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
| 12 | hdmap1l6.l | . . . 4 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 13 | hdmap1l6.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 14 | hdmap1l6.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 15 | hdmap1l6.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | hdmap1l6.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
| 17 | 1, 7, 3 | dvhlvec 41147 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 18 | hdmap1l6cl.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 19 | 18 | eldifad 3914 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 20 | hdmap1l6c.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 21 | hdmap1l6c.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 = 0 ) | |
| 22 | 1, 7, 3 | dvhlmod 41148 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 23 | 8, 9 | lmod0vcl 20822 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
| 24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑉) |
| 25 | 21, 24 | eqeltrd 2831 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 26 | hdmap1l6c.ne | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 27 | 8, 10, 17, 19, 20, 25, 26 | lspindpi 21067 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| 28 | 27 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 29 | 1, 7, 8, 9, 10, 2, 11, 12, 13, 14, 3, 15, 16, 28, 18, 20 | hdmap1cl 41842 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
| 30 | hdmap1l6.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
| 31 | hdmap1l6.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
| 32 | 11, 30, 31 | grprid 18878 | . . 3 ⊢ ((𝐶 ∈ Grp ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
| 33 | 6, 29, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
| 34 | 21 | oteq3d 4839 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝐹, 𝑍〉 = 〈𝑋, 𝐹, 0 〉) |
| 35 | 34 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
| 36 | 1, 7, 8, 9, 2, 11, 31, 14, 3, 15, 19 | hdmap1val0 41837 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
| 37 | 35, 36 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝑄) |
| 38 | 37 | oveq2d 7362 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ 𝑄)) |
| 39 | 21 | oveq2d 7362 | . . . . 5 ⊢ (𝜑 → (𝑌 + 𝑍) = (𝑌 + 0 )) |
| 40 | lmodgrp 20798 | . . . . . . 7 ⊢ (𝑈 ∈ LMod → 𝑈 ∈ Grp) | |
| 41 | 22, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Grp) |
| 42 | hdmap1l6.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
| 43 | 8, 42, 9 | grprid 18878 | . . . . . 6 ⊢ ((𝑈 ∈ Grp ∧ 𝑌 ∈ 𝑉) → (𝑌 + 0 ) = 𝑌) |
| 44 | 41, 20, 43 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑌 + 0 ) = 𝑌) |
| 45 | 39, 44 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) = 𝑌) |
| 46 | 45 | oteq3d 4839 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝐹, (𝑌 + 𝑍)〉 = 〈𝑋, 𝐹, 𝑌〉) |
| 47 | 46 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) |
| 48 | 33, 38, 47 | 3eqtr4rd 2777 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 {cpr 4578 〈cotp 4584 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Grpcgrp 18843 -gcsg 18845 LModclmod 20791 LSpanclspn 20902 HLchlt 39388 LHypclh 40022 DVecHcdvh 41116 LCDualclcd 41624 mapdcmpd 41662 HDMap1chdma1 41829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-riotaBAD 38991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-0g 17342 df-mre 17485 df-mrc 17486 df-acs 17488 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-clat 18402 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cntz 19227 df-oppg 19256 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-nzr 20426 df-rlreg 20607 df-domn 20608 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lvec 21035 df-lsatoms 39014 df-lshyp 39015 df-lcv 39057 df-lfl 39096 df-lkr 39124 df-ldual 39162 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-llines 39536 df-lplanes 39537 df-lvols 39538 df-lines 39539 df-psubsp 39541 df-pmap 39542 df-padd 39834 df-lhyp 40026 df-laut 40027 df-ldil 40142 df-ltrn 40143 df-trl 40197 df-tgrp 40781 df-tendo 40793 df-edring 40795 df-dveca 41041 df-disoa 41067 df-dvech 41117 df-dib 41177 df-dic 41211 df-dih 41267 df-doch 41386 df-djh 41433 df-lcdual 41625 df-mapd 41663 df-hdmap1 41831 |
| This theorem is referenced by: hdmap1l6k 41858 |
| Copyright terms: Public domain | W3C validator |